Steaming Data

- Objectives 2
- What is a data stream? 2
- Streaming Algorithms 4
- Distinct element counting problem 9
- Bloom Filters: Filtering Data Stream Algorithm 14
- Reservoir Sampling 23
- Counting Bits Using DGIM Algorithm 26
- Finding frequent elements 30
- Alon-Matias-Szegedy (AMS) Algorithm (Works on all moments) 31

- Objectives

- Understand the distribution of a data stream
- Data is continuous and unbound
- Hard to process with algorithms for batch data
- Explore stream processing to analyze and process big data in real time to gain current insights to make appropriate decisions.
- The system cannot store the entire stream
- How to process the unbound data stream using limited resources?
- Queries on streams can be very useful: Monitoring, alerts, automated triggering of actions
- What is a data stream?
- Streaming data is used to describe unbounded, time-ordered large sequence data generated continuously at high velocity.
- "A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of items. It is impossible to control the order in which items arrive, nor is it feasible to locally store a stream in its entirety." - Golab \& Oszu

- Data streams (also called tuples) are:
- infinite - one does not know the size of the data
- non-stationary - the distributions of the data can change over time (seasonally, daily, hourly)

- Applications
- Counting distinct elements: Number of distinct elements in the last k elements of the stream
- Sample data from a stream
- Filtering items: Number of distinct elements in the last k elements of the stream
- Estimating moments: Estimate avg./std. dev. of last k elements
- Queries over sliding windows: Number of items of type x in the last k elements of the stream
- Mining query streams: Google wants to know what queries are most frequent than yesterday
- Window size = one day and count the frequency of queries
- Mining click streams: Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour.
- Mining social networks: Looking for trending topics on twitter, Facebook, etc.
- Monitor packets at network switch: detect denial of service attaches.

- Streaming Algorithms

- A data stream is a sequence of data
$\mathrm{S}=\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{i}}, \ldots$,
where each item s_{i} is an item in the universe U, where $|\mathrm{U}|=N$.
- A streaming algorithm A takes S as input and needs to compute some function f of S.
- Processing constraints:
- limited memory
- limited processing time per item
- Streaming data can only be read once.
- Streaming algorithms produces approximate answer due to processing constraints.
- Streaming algorithms efficiency measurements:
- How much data you can store at a time
- Processing time for an input data stream
- Number of passes to process a data stream

- Streaming algorithm approaches:

- There are several approaches to process streaming data such sketching, randomized algorithms, etc.
- We are going to look at two approaches:
- Random sampling
- Sliding windows

- Window-based streaming:

- It is a technique for reducing the complexity of algorithms.
- Make decisions based only on recent data of sliding window size w
- An element arriving at time t expires at time $t+w$
- Data elements are grouped within a window that slides across the data stream according to a specified interval.

A	B	C	D	E	F	G	H	I

A	B	C	D	E	F	G	H	I

- Random sampling

- It consists of selecting a group from a population to represent the whole population.
- Sample without knowing the total length in advance
- Sampling techniques:
- Probabilistic random sampling:
- It is a technique in which each member in a population has an equal chance of being selected as a sample(unbiased)
- Non-probabilistic non-random sampling
- It uses arbitrary sample selection instead of sampling based on a randomized selection

- Probabilistic sampling techniques:

- Simple random sampling:
- It is a random and automated method to select a sample.
- This sampling method assigns numbers to the individuals and then randomly chooses numbers.
- The samples are chosen in two ways:
- Through a lottery system
- Random number generation software.
- Systematic sampling:
- Data elements are selected at regular intervals from the sampling data. The intervals are chosen to ensure an adequate sample size. If you need a sample size s from a population of size n , you should select every $\frac{n}{s}$ th data item for the sample.
- Example:
- Suppose you want to sample 10 students from a list of 50 students: $\frac{50}{10}=5$
- So, every 5th student is chosen after a random starting point between 1 and 5 .
- If the ransom number is 4 , then the students selected are: $4,8,12,16,18,22,24,28$, 32,36.
- Stratified sampling:
- It divides the population into smaller groups, or strata, based on shared characteristics-two strata: Male vs. Female.
- The groups of the population are based on certain criteria, then randomly choose elements from each in proportion to the group's size.

Population

Stratified Sample of size 12

- Clustered sampling:
- It is also known as area sampling.
- It is used when the population is very large.
- It is a probability sampling technique used when different subsets of groups are present in a larger population.
- Sampling is done in three steps:
- Step 1: Divide the population into naturally non-overlapping clusters where each cluster is a mini representation of the entire population.
- Step 2: Simple clustered sampling:
- Randomly choose k clusters to form your sample.
- Stop if you are happy with your sample. Otherwise, continue to Step 3.
- Step 3: Multi-stage clustered sampling:
- Further divide each cluster into new clusters and go step 2.

- Examples of streaming algorithms:
- Filtering a data stream:
- Select elements with property x from the stream
- Bloom Filter algorithm
- Counting distinct elements:
- Number of distinct elements in the last k elements of the stream.
- Flajolet Martin (FM) Algorithm
- Finding frequent elements:
- Finding which element is repeatedly coming-which user is repeatedly visiting the site or how many times product x was sold (Amazon)
- Datar Gionis Indyk Motwani (DGIM) Algorithm
- Estimating moments:
- Estimate avg/std. dev. of last k elements.
- Alon-Matias-Szegedy (AMS) Algorithm
- Finding data items with certain properties:
- Queries on google searches in a specific month
- Products bought at Walmart during the Christmas season
- Reservoir Sampling

- Distinct element counting problem

- Count how many people are visiting a web site.
- Count how many distinct IP numbers are connecting to the server that hosts the web site.
- Count the number of distinct products sold last week.
- Naïve Approach:
- Clearly, using $\mathrm{O}(\mathrm{N})$ memory space, the problem can be solved easily in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time by sorting, or $\mathrm{O}(\mathrm{N})$ expected time with hashing.
- With big data: space is limited.
- We need the following:
- An unbiased estimator of the counts
- Ok to have an error in the estimation as trade-off for space.

- Flajolet Martin (FM) Algorithm

- Flajolet Martin Algorithm, also known as FM algorithm, is an approximation algorithm.
- It approximates the number of unique elements in a data stream in one pass with less memory space.
- If the stream contains n elements with m of them unique, FM runs in $\mathrm{O}(\mathrm{n})$ times and needs $\mathrm{O}(\log (\mathrm{m}))$ memory.
- Algorithm:
- Assume we have N items in the universe
- Pick a hash function h mapping the N items to at least $\log _{2}(\mathrm{~N})$ bits
- for each stream item s,
- calculate $\mathrm{h}(\mathrm{s})$
- Convert $\mathrm{h}(\mathrm{s})$ to a binary representation
- Let $r(s)$ be the number of trailing 0 s in the bit representation of $\mathrm{h}(\mathrm{s})$
//for instance, assume $\mathrm{h}(\mathrm{s})=12$, bit representation 1100 $/ / \mathrm{r}(\mathrm{a})$ is then equal to 2
- keep $\mathrm{R}=\max (\mathrm{r}(\mathrm{s}))$ over the entire stream
- Estimator: the number of distinct items seems thus far is 2^{R}
- Example:
- Given a set $S=\{1,3,2,1,2,3,4,3,1,2,3,1\}$ and a hash function:
- $\mathrm{h}(\mathrm{x})=(6 \mathrm{x}+1) \bmod 5$

x	$H(x)$	Binary	$r(a)$
1	2	00010	1
3	4	00100	2
2	3	00011	0
3	4	00100	2
2	3	00011	0
3	4	00100	2

x	$H(x)$	Binary	$r(a)$
4	0	00000	5
3	4	00100	2
5	1	00001	0
2	3	00011	0
3	4	00100	2
1	2	00010	1

So, $\mathrm{R}=\max (\mathrm{r}(\mathrm{a}))=5$
And the number of distinct elements $=\mathrm{N}=2^{\mathrm{R}}=2^{5}=32$

- Consider another has function: $\mathrm{h}(\mathrm{x})=(\mathrm{x}+7) \bmod 5$

x	$\mathrm{H}(\mathrm{x})$	Binary	$\mathrm{r}(\mathrm{a})$
1	3	00011	0
4	1	00001	0
6	3	00011	0
9	1	00001	0
2	4	00101	0
1	3	00011	0

x	$H(x)$	Binary	$r(a)$
4	1	00001	2
6	3	00011	0
5	2	00010	1
5	2	00010	1
2	4	00100	2
9	1	00001	0

So, $R=\max (r(a))=2$
And the number of distinct elements $=N=2^{R}=2^{2}=4$

- Why FM algorithm works:

- The hash function, $\mathrm{h}(\mathrm{x})$, maps x with equal probability to any one of the N values
- Then $h(x)$ is a sequence of $\log _{2}(N)$ bits.
- The probability that $h(x)$ ends $r 0$'s is 2^{-r}.
- For $\mathrm{r}=1$
- $2^{-1}=\frac{1}{2}=50 \%$ of the x 's hash to ${ }^{* *} . .{ }^{* *} 0$
- For r=2
- $2^{-2}=\frac{1}{4}=25 \%$ of the x 's hash to ${ }^{* *} . . * * 00$
- If the longest tail of 0 's is $\mathrm{r}=2$, item hash ending with ${ }^{* *} 100$, then
- We have probably seen bout $4=2^{2}$ distinct items so far.
- For r
- $\frac{\mathbf{1}}{\mathbf{2}^{r}}$ of all hash values have their binary representation end in $\mathbf{r} 0$'s.
- if the hash function generated an integer ending in $\mathbf{r} 0$'s, intuitively, the number of unique strings is around $\mathbf{2}^{\mathbf{r}}$
- So, the probability that a given $h(x)$ ends with $r 0$'s is 2^{-r}
\rightarrow And the probability of NOT seeing a tail of r 0's among m elements in the stream:

$$
\left(1-2^{-r}\right)^{m}
$$

The probability of all \mathbf{m} data items ends in fewer than $\mathbf{r} 0$'s

- Let us approximate $\left(\mathbf{1}-\mathbf{2}^{-r}\right)^{\boldsymbol{m}}$:

$$
\left(1-2^{-r}\right)^{m}=e^{\ln \left(1-2^{-r}\right)^{m}}=e^{\operatorname{mln}\left(1-2^{-r}\right)}
$$

- Let us approximate $\ln \left[\left(1-\mathbf{2}^{-\boldsymbol{r}}\right)\right.$ using Taylor expansion:

$$
\begin{gathered}
\ln \left[(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots\right. \\
\ln \left[\left(1-2^{-r}\right) \approx-2^{-r}\right.
\end{gathered}
$$

So,

$$
\left(1-2^{-r}\right)^{m}=e^{\operatorname{mIn}\left(1-2^{-r}\right)} \approx e^{-m 2^{-r}}
$$

- So, the probability of NOT finding a tail of r 0 's is:
- If $\mathbf{m} \ll \mathbf{2}^{r}$ then the probability tends to $\mathbf{1}$

$$
\left(1-2^{-r}\right)^{m} \approx e^{-m 2^{-r}}=1 \text { since } \frac{m}{2^{r}} \rightarrow 0
$$

The probability of finding a tail of length r 0's tends to 0

- If $\mathbf{m} \gg \mathbf{2}^{r}$ then the probability tends to $\mathbf{0}$

$$
\left(1-2^{-r}\right)^{m} \approx e^{-m 2^{-r}}=0 \text { since } \frac{m}{2^{r}} \rightarrow \infty
$$

The probability of finding a tail of length r 0's tends to 1

- In summary:
- Let m be the number of distinct elements seen so far in the stream (Our objective is to estimate m)
- We have shown that the probability of finding a tail of r 0's is:
- 1 if $\mathbf{m} \gg \mathbf{2}^{r}$
- 0 if $\mathbf{m} \ll \mathbf{2}^{r}$
- In practice the probability of seeing a tail of r 0's is neither 1 or 0
$\rightarrow 2^{r}$ will always be around m

- Bloom Filters: Filtering Data Stream Algorithm

- It has been around for over 50 years.
- Check if some data item is NOT present in a very big list
- Check if a username exists without hitting performing a full database search - especially for large databases
- How to save time, space, and disk I/Os in checking if a data element exists?
- Filter the non-existence of a username without a full search: Constant TIME and SPACE.
- Applications:
- Google Chrome used to use Bloom filters to detect malicious URLs
- Facebook and Gmail use Bloom Filter to check if a user exists.

- What is a Bloom Filter?

- It is a space efficient probabilistic data structure developed by Burton Howard Bloom back in 1970.
- It used to test whether an item is a member of a set.
- It never generates a FALSE NEGATIVE: 0\%
- It has some FALSE POSITIVE: It confirms that an item exists while it does not.

	Actual Positive	Actual Negative
Predicted Positive "A maybe answer"	True Positive: 1-p	False Positive: p^{*} The item has never been inserted, yet we are returning TRUE.
Predicted Negative	False Negative: 0\%	True Negative:100\%
Minimize the probability p		

- No deletion: Cannot delete an item from the filter
- Cannot list the inserted items in the filter.
- How does a Bloom Filter work?
- Given a set S of m items.
- A Bloom filter is a n-bit array initialized to 0's:

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

- It uses a collection of k hash function $h_{1}, h_{2}, h_{3}, \ldots, h_{k}$
- Insertions:
- Step1: Calculate indices using k hash functions
- Each of the k hash functions maps an item from S to one of the n-bit array
- Step 2: Set bits to 1 at indices calculated in step 1

- Query: Bloom Filter Lookup

- Suppose an item ai appears in the data stream and we want to know if it has been seen before.

- Example:
- Given a set S of string characters (usernames):
$\mathrm{S}=\{\mathrm{cat}, \mathrm{dog}$, bird, lion. Frog $\}$
- And the following two hash functions h_{1} and h_{2}.
$\mathrm{H}_{1}($ word $)=($ ASCII(first char) + ASCII(second char) + ASCII(last) $) \bmod 16$
$\mathrm{H}_{2}($ word $)=\left((\text { ASCII (first char) })^{2}+\right.$ ASCII(second char $)+$ ASCII(last) - ASCII(first cha $\bmod 16$

Stream Item	H1	H2
Cat	8	9
Dog	10	0
Bird	15	4
Lion	3	4
Frog	15	4

- Insertions:
- cat: set bit 8 and 9

0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

- dog: set bit 0 and 10

1	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

- bird: set bit 4 and 15

1	0	0	0	1	0	0	0	1	1	1	0	0	0	0	1
0	0														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

- lion: set bit 3 and 4

1	0	0	1	1	0	0	0	1	1	1	0	0	0	0	1	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

- frog: set bit 4 and 15

1	0	0	1	1	0	0	0	1	1	1	0	0	0	0	1
0	0														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

- Bloom Filter Final State:

1	0	0	1	1	0	0	0	1	1	1	0	0	0	0	1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

- Check if an item in available:
- Use the following new items (usernames)

Stream Item	H1	H2
ant	3	0
tiger	15	0
monkey	5	6
snake	6	9

- Query: ant
- Hash values are 3 and 0
\circ All the bits in the filter are set to $1 \rightarrow$ False Positive
- Query: Tiger
- Hash values are 0 and 15
- All the bits in the filter are set to $0 \rightarrow$ True Negative
- Query: Monkey
- Hash values are 5 and 6
- All the bits in the filter are set to $0 \rightarrow$ True Negative
- Query: Snake
- Hash values are 6 and 9
\circ NOT all the bits in the filter are set to $1 \rightarrow$ True Negative

- Bloom Filter - Analysis

- Given a Bloom Filter with \mathbf{n} bits and uses k hash functions that are uniform and independent
- What is the probability that a bit in the filter is 1 , assuming one hash function?

$$
\text { Probability is } \frac{\mathbf{1}}{\boldsymbol{n}}
$$

- What is the probability that a bit in the filter is 0 , assuming one hash function?

$$
\text { Probability is } 1-\frac{\mathbf{1}}{\boldsymbol{n}}
$$

- What is the probability that a bit in the filter is 0 , after \mathbf{m} items have been inserted using all k hash functions?

$$
p_{0}=\left(1-\frac{\mathbf{1}}{\boldsymbol{n}}\right)^{\boldsymbol{k m}}
$$

- What is the probability that a bit in the filter is 1 , after m items have been inserted using all k hash functions?

$$
p_{1}=1-p_{0}
$$

- The probability of FALSE POSITIVE then is:

$$
p_{1}^{k}=\left(1-p_{0}\right)^{k}
$$

Let us call the FALSE POSITIVE probability, FP

$$
F P=p_{1}^{k}=\left(1-\left(1-\frac{1}{\boldsymbol{n}}\right)^{k m}\right)^{k}
$$

- Let us rewrite the probability that a bit in the filter is 0 using e

$$
\begin{aligned}
& \left(1-\frac{1}{\boldsymbol{n}}\right)^{\boldsymbol{k m}}=e^{\ln \left[\left(1-\frac{1}{n}\right)^{k m}\right]} \\
& \left(1-\frac{1}{\boldsymbol{n}}\right)^{\boldsymbol{k m}}=e^{k m \ln \left[\left(1-\frac{1}{n}\right)\right.}
\end{aligned}
$$

- Let us approximate $\ln \left[\left(1-\frac{1}{n}\right)\right.$ using Taylor expansion:

$$
\ln \left[(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots\right.
$$

If x is very small, them the terms after x are much smaller

$$
\text { Then, } \ln \left[\left(1-\frac{1}{n}\right) \approx-\frac{1}{n}\right.
$$

And,

$$
e^{k m \ln \left[\left(1-\frac{\mathbf{1}}{\boldsymbol{n}}\right)\right.} \approx e^{-\frac{m k}{n}}
$$

- So, the probability that a bit in the filter is 0 :

$$
p_{0}=\left(1-\frac{\mathbf{1}}{\boldsymbol{n}}\right)^{\boldsymbol{k} \boldsymbol{m}} \approx e^{-\frac{m k}{n}}=\tilde{p}_{0}
$$

- Let us approximate the FALSE POSITIVE probability, FP

$$
\begin{aligned}
F P=p_{1}^{k} & =\left(1-\left(1-\frac{1}{n}\right)^{k m}\right)^{k} \approx\left(1-e^{-\frac{m k}{n}}\right)^{k} \\
& \approx\left(1-\widetilde{p}_{0}\right)^{k}
\end{aligned}
$$

Note that $\frac{\boldsymbol{m}}{\boldsymbol{n}}$ is the number of items per slot (m is the number of items and n is the number of bits in the filter)

- How so we choose the number of hash function \mathbf{k} ?
- If K is large, then
- The filter will clog with 1's
- If K is too small then,
- The error does not decrease.
- If you plot FP, the function shows a minimum
- Compute the best k for a given m and n :
- Take the derivative of FA (it is tricky)

$$
\frac{d}{d k}(F A)=\frac{d}{d k}\left(1-e^{-\frac{m k}{n}}\right)^{k}
$$

\rightarrow Take the \log of FA: yield the same minimum

$$
\begin{aligned}
\frac{d}{d k} \ln (F A) & =\frac{d}{d k} \ln \left(\mathbf{1}-e^{-\frac{m k}{n}}\right)^{k} \\
\frac{d}{d k} \ln (F A) & =\frac{d}{d k} k \operatorname{In}\left(\mathbf{1}-\boldsymbol{e}^{-\frac{m k}{n}}\right)
\end{aligned}
$$

- Derivative is zero when

$$
k=\ln 2 \cdot \frac{n}{m}
$$

- Therefore, the best value for k is best choice of k :

$$
k=\ln 2 \cdot \frac{n}{m}
$$

If we pick ideal (\# hashes) for fixed m and n, what fraction of the filter do we expect to be set bits?

What is the optimal value for $\widetilde{\boldsymbol{p}}_{\mathbf{0}}$?

$$
\begin{aligned}
& e^{-\frac{m k}{n}}=\widetilde{p}_{0} \\
& \Rightarrow \ln e^{-\frac{m k}{n}}=\ln \widetilde{p}_{0} \\
& \Rightarrow-\frac{m k}{n}=\ln \widetilde{p}_{0} \\
& \Rightarrow k=-\frac{n}{m} \ln \widetilde{p}_{0}
\end{aligned}
$$

So, the best choice of k

$$
\begin{aligned}
& k=\ln 2 \cdot \frac{n}{m}=-\frac{n}{m} \ln \widetilde{p}_{0} \\
& \Rightarrow-\ln 2=\ln \widetilde{p}_{0}
\end{aligned}
$$

$$
\Rightarrow \ln \widetilde{p}_{0}=-\ln 2=\ln 2^{-1}=\ln \frac{1}{2}
$$

$\Rightarrow \tilde{p}_{0}=\frac{1}{2} \quad$ The filter is 50% set to 1.

- Reservoir Sampling

- Reservoir sampling is a fixed-size randomized algorithm that chooses a data item without replacement, of \mathbf{s} items from a population of unknown size n in a single pass over the items.
- It maintains a set \mathbf{s} of random samples seen so far in the stream.
- New item has a certain probability $\frac{\mathbf{s}}{\mathbf{n}}$ of replacing an old element in the reservoir.
- Apache Spark uses reservoir sampling during the generation of values for range partitioning.

- Problem Definition:

- Given a stream of n items, we want to sample \mathbf{s} random items, without replacement and by using uniform probabilities.
- n is unknown and too large for all n items to fit into main memory.
- Data items are revealed to the algorithm over time, and the algorithm cannot look back at previous items.

- Algorithm:

- Store all the first \mathbf{s} items of the stream to a set \mathbf{S}
- Suppose we have seen $\mathbf{n - 1}$ items, and now the $\mathbf{n}^{\text {th }}$ item arrives ($\mathbf{n}>\mathbf{s}$)
- With probability $\frac{\mathbf{s}}{\mathbf{n}}$, keep the $\mathbf{n}^{\text {th }}$ item, else discard it
- If we picked the $\mathbf{n}^{\text {th }}$ item, then it replaces one of the s items in the sample S, picked uniformly at random

- Claim:

- The algorithm maintains a sample S with the desired property: After n items, the sample contains each item seen so far with probability $\frac{\mathbf{s}}{\mathbf{n}}$.
- Proof By Induction:
- We assume that after n items, the sample contains each item see so far with probability $\frac{\mathbf{s}}{\mathbf{n}}$
- We need to show that after seeing the item $\mathrm{n}+1$ the sample maintains the property that
- Sample contains each element seen so far with probability $\frac{\mathrm{s}}{\mathrm{n}+1}$
- Base case:
- After we see $\mathrm{n}=\mathrm{s}$ items, the sample has the desired property
- Each one of the $\mathrm{n}=\mathrm{s}$ items is included in the sample with probability $\frac{\mathrm{s}}{\mathrm{s}}=\mathbf{1}$
- Inductive hypothesis:
- After n items, the sample S contains each item seen so far with probability $\frac{\mathbf{s}}{\mathbf{n}}$
- Let us now process the new item $\mathrm{n}+1$
- Inductive Step:
- For items already in S, the probability that the algorithm keeps it in S is:

$$
\left(1-\frac{s}{n+1}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right)=\frac{n}{n+1}
$$

$1-\frac{\mathrm{s}}{\mathrm{n}+1} \rightarrow$ Estimate $\mathrm{n}+1$ discarded
$\frac{\mathrm{s}}{\mathrm{n}+1} \rightarrow$ Estimate $\mathrm{n}+1$ NOT discarded
$\frac{s-1}{\mathrm{~s}} \rightarrow$ Old elements in the sample NOT picked

- So, at time n, items in S were there with probability $\frac{\mathbf{s}}{\mathbf{n}}$

$$
\begin{aligned}
& \left(1-\frac{s}{n+1}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right) \\
& =\left(1-\frac{s}{n+1}\right)+\left(\frac{s-1}{n+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =1-\frac{s}{n+1}+\frac{s}{n+1}-\frac{1}{n+1} \\
& =\frac{n}{n+1}
\end{aligned}
$$

- Time $\mathrm{n} \rightarrow \mathrm{n}+1$, item stayed in S with probability $\frac{n}{n+1}$

- Counting Bits Using DGIM Algorithm

- For every product \mathbf{x} we keep $0 / 1$ stream of whether that product was sold in a given transaction
- How many times have we sold \mathbf{x} in the last \mathbf{k} sales?
- Given is a binary stream with a sliding window of length N
- How many 1 's are in the last N bits?

- Datar-Gionis-Indyk-Motwani Algorithm (DGIM)
- The algorithm only stores $\mathbf{O}\left(\log ^{2}(\mathbf{N})\right)$
- The approximate solution is never off by more than 50%
- The error factor can be further reduced by more complicated algorithm and more stored bits.
- Allow to estimate the number of 1 's in the window with an error of no more than 50%
- Each bit arrives has a timestamp
- The window is divided into buckets of 1's and 0's
- Rules for forming the buckets:
- All buckets should be on power of 2: $2^{0}, 2^{1}, 2^{2}, \ldots$
- The right side of the bucket should always start with 1 on its right end.
- Every bucket should have at least one 1, otherwise no bucket can be formed.
- The buckets cannot be decreased in size as we read new elements.
- There are one or two buckets of the same size up to some maximum size
- Buckets are sorted by size. Earlier buckets are not smaller than later buckets
- Buckets start disappearing when their end time is $>\mathrm{N}$ time units in the past.

- When a new bit comes in, drop the last bit from the old bucket if its time-end is prior to N time units before the current time. Two cases:
- If the current bit is 0 : No other changes are needed.
- If the current bit is 1 :
- Create a new bucket of size 1 for just this bit
- If there are now three buckets of size 1:
- Combine the oldest buckets of size 1 into a new bucket of size 2 .
- If there are three buckets of size 2:
- Combine the oldest buckets of size 2 into a bucket of size 4
- Etc.

Page 28|34

- Why the error is $\mathbf{5 0 \%}$?

- Suppose the last bucket has size $\mathbf{2}^{\mathrm{r}}$.
- If we assume that half of the total number of bits of this bucket are still in the window, we are making an error of at most $2^{\text {r-1 }}$
- In the sliding window, we have at least one bucket of each of the sizes less than $\mathbf{2}^{\mathbf{r}}$, then the total number of bits is:

$$
\begin{aligned}
& 2^{0}+2^{1}+2^{2}+\ldots+2^{r-1}=2^{r}-1 \\
& \quad \Rightarrow \text { The error is } \frac{2^{r-1}}{2^{r}-1}=\frac{1}{2} \frac{2^{r}}{2^{r}-1} \approx \frac{1}{2}=50 \%
\end{aligned}
$$

- How to reduce the error?

- Instead of maintaining 1 or 2 of each bucket, we allow either $r-1$ or r buckets where $r>2$.
- Except of the largest bucket, we can have any number of rlor r buckets.
- In the sliding window, we can have up r buckets of each of the sizes less than $\mathbf{2}^{\mathbf{r}}$, then the total number of bits is:

$$
\begin{aligned}
\mathbf{r} 2^{0}+\mathbf{r} 2^{1} & +\mathbf{r} 2^{2}+\ldots+\mathbf{r} 2^{r-1}=\mathbf{r}\left(2^{r}-1\right) \\
& \Rightarrow \text { The error is } \frac{2^{r-1}}{\mathbf{r}\left(2^{r}-1\right)}=\frac{\mathbf{1}}{2 r} \frac{2^{r}}{2^{r}-1} \approx \frac{\mathbf{1}}{2 r} \\
& \Rightarrow \text { So, the error is at most } O\left(\frac{1}{r}\right)
\end{aligned}
$$

- By picking r approximately, we can tradeoff between number of bits we store and the error.

- Finding frequent elements

- Applications:
- High-speed network switch: tokens are packets with source,
- destination IP addresses and message contents.
- Each token is an edge in graph (graph streams)
- Each token in a point in some feature space
- Each token is a row/column of a matrix
- Problem Description:
- The input consists of m objects/items/tokens $S=e_{1}, e_{2}, \ldots, e_{s}$ that are seen one by one by the algorithm where e_{i} is an element of a universal set U of size $n=|U|$
- Let $\mathbf{f}_{\mathbf{i}}$ denote the frequency of an item \mathbf{i} or number of times \mathbf{i} is seen in the stream S

Consider the frequency vector:

$$
\mathrm{f}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right) \text { where } \mathrm{n}=|\mathrm{U}|
$$

For $k>=0$ the k 'th frequency moment

$$
\mathrm{F}_{\mathrm{k}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}^{\mathrm{k}}
$$

- Special cases:
- $\mathrm{k}=0$:

$$
\mathrm{F}_{0}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}^{0}
$$

- F_{0} is simply the number of distinct elements in stream (Flajolet-Martin(FM) algorithm)
- $\mathrm{k}=1$:

$$
F_{1}=\sum_{i=1}^{n} f_{i}^{1}
$$

- F_{1} is the length of stream which is easy
- $\mathrm{k}=2$:

$$
F_{2}=\sum_{i=1}^{n} f_{i}^{2}
$$

- F_{2} is surprise number is a measure of how uneven the distribution is.
- Example:

Consider the following set $\mathrm{U}=(1,2,3,4,5,6,7,8,9, . .1000\}$ And a stream S of 10 values

Case 1: $S=\{200,1,1,1,1,1,1,1,1,1\}$

$$
F_{2}=200^{2}+9 \times 1^{2}=40009
$$

Case 2: $S=\{10,10,10,10,10,10,8,8,8,8\}$

$$
\mathrm{F}_{2}=6 \times 10^{2}+4 \times 8^{2}=356
$$

- $\mathrm{k}=$ infinity
- F_{∞} is the maximum frequency (heavy hitters prob)
- Direct Method
- It requires memory of the order $\Omega(\mathrm{N})$ to store m_{i} for all distinct elements.
- But we have memory limitations, and requires an algorithm to compute in much lower memory

- Alon-Matias-Szegedy (AMS) Algorithm (Works on all moments)

- AMS works for all moments
- It gives an unbiased estimate.
- Let us consider the 2nd moment for now.
- We pick and keep track of many variables X:
- For each variable X, we form a key-value pair:
- X.key: The data element i
- X.val: The count of item i
- Note this requires a count in main memory, so the number of Xs is limited
- The objective is to compute:

$$
S=\sum_{i} m_{i}^{2}
$$

where $\mathbf{m i}$ is the number of times value \mathbf{i} occurs in the stream and i is the number of distinct elements in the stream

- Expectation Analysis
- The second moment is $\boldsymbol{S}=\sum_{i} \boldsymbol{m}_{\boldsymbol{i}}^{2}$
- Our estimate is

$$
\text { - } S=f(X)=n(2 c-1)
$$

- Let us computer the expectation of our estimate:
- c_{t} is the number of times item at time t appears from time t onwards ($\mathbf{c}_{1}=\mathbf{m}_{\mathrm{a}}, \mathbf{c}_{2}=\mathbf{m}_{\mathbf{a}}-\mathbf{1}, \mathbf{c}_{3}=\mathbf{m}_{\mathbf{b}}$)

If $\mathbf{m}_{\mathbf{a}}$ is the total count of \mathbf{a} in the stream

$\mathbf{m i}$ is the total count of item i in the stream, assuming a stream of length \mathbf{n}

$$
\mathrm{E}[\mathrm{f}(\mathrm{X})]=\frac{1}{\mathrm{n}} \sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{n}\left(2 \mathrm{c}_{t}-1\right)
$$

Where
Time t when last item i is seen $\boldsymbol{c}_{\boldsymbol{t}}=\mathbf{1}$ Time t when second last item i is seen $\boldsymbol{c}_{\boldsymbol{t}}=\mathbf{2}$

Time t when the first item i is seen $\boldsymbol{c}_{\boldsymbol{t}}=\boldsymbol{m}_{\boldsymbol{i}}$

- Sum the times by the value seen (By distinct item)

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{E}[\mathrm{f}(\mathrm{X})]=\frac{1}{\mathrm{n}} \sum_{i} \sum_{i=1}^{m_{i}} n\left(1+3+5+\cdots+2 m_{i}-1\right) \\
=\frac{1}{\mathrm{n}} \sum_{i} n \sum_{i=1}^{m_{i}}(2 i-1)=\frac{1}{\mathrm{n}} \sum_{i} n\left(\sum_{i=1}^{m_{i}} 2 i-\sum_{i=1}^{m_{i}} 1\right)
\end{array} \\
& =\sum_{i} 2 \frac{m_{i}\left(m_{i}+1\right)}{2}-m_{i}=\sum_{i} m_{i}^{2}+m_{i}-m_{i}=\sum_{i} m_{i}^{2} \\
& \Rightarrow \mathbf{E}[\mathbf{f}(\mathbf{X})]=\sum_{i}{m_{i}}^{2}=S
\end{aligned}
$$

- High order moments
- To estimate the kth moment, we use the same algorithm but change the estimate:
- For $\mathrm{k}=2$, we used $\mathrm{n}(2 . \mathrm{c}-1)$
- For $\mathrm{k}=3$, we use: $\mathrm{n}\left(3 \mathrm{c}^{2}+-3 \mathrm{c}+1\right)$ where $\mathrm{c}=X$. val
- Explanation:
- For k=2:
- We used the following estimate function:
- $\mathbf{S}=\mathbf{f}(\mathbf{X})=\mathbf{n}(\mathbf{2 c}-1)$

$$
\text { And we have shown that } \mathbf{E}[\mathbf{f}(\mathbf{X})]=\sum_{i} \boldsymbol{m}_{\boldsymbol{i}}^{2}=\boldsymbol{S}
$$

- Note that the estimate function:
- $S=f(X)=n(2 c-1)=n\left(c^{2}-(c-1)^{2}\right)$
- For $\mathrm{k}=3$:

$$
\text { - } S=f(X)=n\left(c^{3}-(c-1)^{3}\right)=n\left(3 c^{2}-3 c+1\right)
$$

- For any k:

$$
\text { - } S=f(X)=n\left(c^{k}-(c-1)^{k}\right)
$$

- How do we handle never ending stream?
- The estimate function we used assume a stream of n items:

$$
S=f(X)=n(2 c-1)
$$

- Assume we can only store k counts. We must ignore some X's out as time goes on.
- Objective:
- Each starting time t is selected with probability $\frac{\mathbf{k}}{\mathbf{n}}$
- Solution:
- Use fixed-size sampling - Reservoir Sampling
- Choose the first k times for k variables
- When the $\mathrm{n}^{\text {th }}$ element arrives ($\mathrm{n}>\mathrm{k}$), choose it with probability $\frac{\mathrm{k}}{\mathrm{n}}$
- If you choose it, throw one of the previous stored variable X out with equal probability.

