Steaming Data

•	Objectives	2
•	What is a data stream?	2
•	Streaming Algorithms	4
•	Distinct element counting problem	9
•	Bloom Filters: Filtering Data Stream Algorithm	14
•	Reservoir Sampling	23
	Counting Bits Using DGIM Algorithm	
•	Finding frequent elements	30
•	Alon-Matias-Szegedy (AMS) Algorithm (Works on all moments)	31

• Objectives

- Understand the distribution of a data stream
- Data is continuous and unbound
- Hard to process with algorithms for batch data
- Explore stream processing to analyze and process big data in real time to gain current insights to make appropriate decisions.
- The system cannot store the entire stream
- How to process the unbound data stream using limited resources?
- Queries on streams can be very useful: Monitoring, alerts, automated triggering of actions
- What is a data stream?
 - Streaming data is used to describe unbounded, time-ordered large sequence data generated continuously at high velocity.
 - "A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of items. It is impossible to control the order in which items arrive, nor is it feasible to locally store a stream in its entirety." - Golab & Oszu

- Data streams (also called tuples) are:
 - infinite one does not know the size of the data
 - non-stationary the distributions of the data can change over time (seasonally, daily, hourly)

- Applications
 - Counting distinct elements: Number of distinct elements in the last k elements of the stream
 - Sample data from a stream
 - Filtering items: Number of distinct elements in the last k elements of the stream
 - Estimating moments: Estimate avg./std. dev. of last k elements
 - Queries over sliding windows: Number of items of type x in the last k elements of the stream
 - Mining query streams: Google wants to know what queries are most frequent than yesterday
 - Window size = one day and count the frequency of queries
 - Mining click streams: Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour.
 - Mining social networks: Looking for trending topics on twitter, Facebook, etc.

Monitor packets at network switch: detect denial of service attaches.

• Streaming Algorithms

• A data stream is a sequence of data

```
\mathbf{S} = \mathbf{s}_1, \, \mathbf{s}_2, \, \ldots, \, \mathbf{s}_i, \, \ldots,
```

where each item s_i is an item in the universe U, where |U| = N.

- A streaming algorithm A takes S as input and needs to compute some function f of S.
- Processing constraints:
 - limited memory
 - limited processing time per item
 - Streaming data can only be read once.
 - Streaming algorithms produces approximate answer due to processing constraints.
 - Streaming algorithms efficiency measurements:
 - How much data you can store at a time
 - Processing time for an input data stream
 - Number of passes to process a data stream
- Streaming algorithm approaches:
 - There are several approaches to process streaming data such sketching, randomized algorithms, etc.
 - We are going to look at two approaches:
 - Random sampling
 - Sliding windows
 - Window-based streaming:
 - It is a technique for reducing the complexity of algorithms.
 - Make decisions based only on recent data of sliding window size w
 - An element arriving at time t expires at time t + w
 - Data elements are grouped within a window that slides across the data stream according to a specified interval.

А	В	С	D	E	F	G	Н	Ι
---	---	---	---	---	---	---	---	---

Random sampling

- It consists of selecting a group from a population to represent the whole population.
- Sample without knowing the total length in advance
- Sampling techniques:
 - Probabilistic random sampling:
 - It is a technique in which each member in a population has an equal chance of being selected as a sample(unbiased)
 - Non-probabilistic non-random sampling
 - It uses arbitrary sample selection instead of sampling based on a randomized selection

Probabilistic sampling techniques:

- Simple random sampling:
 - It is a random and automated method to select a sample.
 - This sampling method assigns numbers to the individuals and then randomly chooses numbers.
 - The samples are chosen in two ways:
 - Through a lottery system
 - Random number generation software.
- Systematic sampling:
 - Data elements are selected at regular intervals from the sampling data. The intervals are chosen to ensure an adequate sample size. If you need a sample size s from a population of size n, you should select every ⁿ/_s th data item for the sample.
 - Example:
 - Suppose you want to sample 10 students from a list of 50 students: $\frac{50}{10} = 5$

- So, every 5th student is chosen after a random starting point between 1 and 5.
- If the ransom number is 4, then the students selected are: 4, 8, 12, 16,18,22,24, 28, 32,36.
- Stratified sampling:
 - It divides the population into smaller groups, or strata, based on shared characteristics-two strata: Male vs. Female.
 - The groups of the population are based on certain criteria, then randomly choose elements from each in proportion to the group's size.

- Clustered sampling:
 - It is also known as area sampling.
 - It is used when the population is very large.
 - It is a probability sampling technique used when different subsets of groups are present in a larger population.
 - Sampling is done in three steps:
 - Step 1: Divide the population into naturally non-overlapping clusters where each cluster is a mini representation of the entire population.

- Select elements with property x from the stream
- Bloom Filter algorithm
- Counting distinct elements:
 - Number of distinct elements in the last k elements of the stream.
 - Flajolet Martin (FM) Algorithm

- Finding frequent elements:
 - Finding which element is repeatedly coming-which user is repeatedly visiting the site or how many times product x was sold (Amazon)
 - Datar Gionis Indyk Motwani (DGIM) Algorithm
- Estimating moments:
 - Estimate avg/std. dev. of last k elements.
 - Alon-Matias-Szegedy (AMS) Algorithm
- Finding data items with certain properties:
 - Queries on google searches in a specific month
 - Products bought at Walmart during the Christmas season
 - Reservoir Sampling

• Distinct element counting problem

- Count how many people are visiting a web site.
 - Count how many distinct IP numbers are connecting to the server that hosts the web site.
- Count the number of distinct products sold last week.
- Naïve Approach:
 - Clearly, using O(N) memory space, the problem can be solved easily in O(N log N) time by sorting, or O(N) expected time with hashing.
 - With big data: space is limited.
 - We need the following:
 - An unbiased estimator of the counts
 - Ok to have an error in the estimation as trade-off for space.
 - Flajolet Martin (FM) Algorithm
 - Flajolet Martin Algorithm, also known as FM algorithm, is an approximation algorithm.
 - It approximates the number of unique elements in a data stream in one pass with less memory space.
 - If the stream contains n elements with m of them unique,
 FM runs in O(n) times and needs O(log(m)) memory.
 - Algorithm:
 - Assume we have N items in the universe
 - Pick a hash function h mapping the N items to at least log₂(N) bits
 - for each stream item s,
 - calculate h(s)
 - Convert h(s) to a binary representation
 - Let r(s) be the number of trailing 0s in the bit representation of h(s)
 //for instance, assume h(s) = 12, bit representation 1100
 //r(a) is then equal to 2
 - keep R = max(r(s)) over the entire stream
 - Estimator: the number of distinct items seems thus far is 2^R

- Example:
 - Given a set S={1,3,2,1,2,3,4,3,1,2,3,1} and a hash function:
 h(x)=(6x+1) mod 5

x	H(x)	Binary	r(a)	x	H(x)	Binary	r(a)
1	2	00010	1	4	0	00000	5
3	4	00100	2	3	4	00100	2
2	3	00011	0	5	1	00001	0
3	4	00100	2	2	3	00011	0
2	3	00011	0	3	4	00100	2
3	4	00100	2	1	2	00010	1

So, R = max(r(a)) = 5And the number of distinct elements = $N=2^{R}=2^{5}=32$

Consider another has function: h(x)=(x+7) mod 5

X	H(x)	Binary	r(a)	x	H(x)	Binary	r(a)
1	3	00011	0	4	1	00001	2
4	1	00001	0	6	3	00011	0
6	3	00011	0	5	2	00010	1
9	1	00001	0	5	2	00010	1
2	4	00101	0	2	4	00100	2
1	3	00011	0	9	1	00001	0

So, R = max(r(a)) = 2 And the number of distinct elements = $N=2^{R}=2^{2}=4$

• Why FM algorithm works:

- The hash function, h(x), maps x with equal probability to any one of the N values
- Then h(x) is a sequence of log₂(N) bits.
- The probability that h(x) ends r 0's is 2^{-r}.
 - For r=1 • $2^{-1} = \frac{1}{2} = 50\%$ of the x's hash to **..**0
 - For r=2

•
$$2^{-2} = \frac{1}{4} = 25\%$$
 of the x's hash to **..**00

- If the longest tail of 0's is r=2, item hash ending with **100, then
 - We have probably seen bout $4=2^2$ distinct items so far.
- For r
 - $\frac{1}{2^r}$ of all hash values have their binary representation end in **r** 0's.
 - if the hash function generated an integer ending in **r** 0's, intuitively, the **number of unique strings** is around 2^{**r**}
- So, the probability that a given h(x) ends with r 0's is 2^{-r}

→ And the probability of NOT seeing a tail of r 0's among m elements in the stream:

$$(1-2^{-r})^m$$

The probability of all m data items ends in fewer than r 0's

• Let us approximate $(1 - 2^{-r})^m$:

$$(1-2^{-r})^m = e^{\ln(1-2^{-r})^m} = e^{\min(1-2^{-r})^m}$$

• Let us approximate $\ln[(1-2^{-r})]$ using Taylor expansion: $\ln[(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + ...$ $\ln[(1-2^{-r}) \approx -2^{-r}]$

So,

$$(1-2^{-r})^m = e^{m\ln(1-2^{-r})} \approx e^{-m2^{-r}}$$

- So, the probability of NOT finding a tail of r 0's is:
 - If $m << 2^r$ then the probability tends to 1

$$(1-2^{-r})^m \approx e^{-m 2^{-r}} = 1$$
 since $\frac{m}{2^r} \to 0$

The probability of finding a tail of length r 0's tends to 0

• If $m >> 2^r$ then the probability tends to 0

$$(1-2^{-r})^m \approx e^{-m 2^{-r}} = 0$$
 since $\frac{m}{2^r} \to \infty$

The probability of finding a tail of length r 0's tends to 1

- In summary:
 - Let m be the number of distinct elements seen so far in the stream (Our objective is to estimate m)
 - We have shown that the probability of finding a tail of r 0's is:
 - \circ 1 if m>>2^r
 - $\circ 0$ if **m<<2**^r

• In practice the probability of seeing a tail of r 0's is neither 1 or 0

$\rightarrow 2^r$ will always be around m

• Bloom Filters: Filtering Data Stream Algorithm

- It has been around for over 50 years.
- Check if some data item is NOT present in a very big list
- Check if a username exists without hitting performing a full database search – especially for large databases
- How to save time, space, and disk I/Os in checking if a data element exists?
 - Filter the non-existence of a username without a full search: Constant TIME and SPACE.
- Applications:
 - Google Chrome used to use Bloom filters to detect malicious URLs
 - Facebook and Gmail use Bloom Filter to check if a user exists.
- What is a Bloom Filter?
 - It is a space efficient probabilistic data structure developed by Burton Howard Bloom back in 1970.
 - It used to test whether an item is a member of a set.
 - It never generates a FALSE NEGATIVE: 0%
 - It has some FALSE POSITIVE: It confirms that an item exists while it does not.

	Actual Positive	Actual Negative						
Predicted Positive "A maybe answer"	True Positive: 1-p	False Positive: p* The item has never been inserted, yet we are returning TRUE.						
Predicted Negative	False Negative: 0%	True Negative:100%						
* Minimize the probability p								

• No deletion: Cannot delete an item from the filter

- Cannot list the inserted items in the filter.
- How does a Bloom Filter work?
 - Given a set S of m items.
 - A Bloom filter is a n-bit array initialized to 0's:

- It uses a collection of k hash function h₁, h₂, h₃, ..., h_k
- Insertions:
 - Step1: Calculate indices using k hash functions
 - Each of the k hash functions maps an item from S to one of the n-bit array
 - Step 2: Set bits to 1 at indices calculated in step 1

Query: Bloom Filter Lookup

 Suppose an item ai appears in the data stream and we want to know if it has been seen before.

- Given a set S of string characters (usernames):
 S={cat, dog, bird, lion. Frog}
- And the following two hash functions h₁ and h₂.

$$\begin{split} H_1(word) &= (ASCII(first char) + ASCII(second char) + ASCII(last)) \ mod \ 16 \\ H_2(word) &= ((ASCII(first char))^2 + ASCII(second char) + ASCII(last) - ASCII(first char) \\ mod \ 16 \end{split}$$

Stream Item	H1	H2
Cat	8	9
Dog	10	0
Bird	15	4
Lion	3	4
Frog	15	4

- Insertions:
 - cat: set bit 8 and 9

- bird: set bit 4 and 15 0 0 8 9 10
- lion: set bit 3 and 4

• Bloom Filter Final State:

1	0	0	1	1	0	0	0	1	1	1	0	0	0	0	1	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

- Check if an item in available:
 - Use the following new items (usernames)

Stream Item	H1	H2
ant	3	0
tiger	15	0
monkey	5	6
snake	6	9

- Query: ant
 - $\circ~$ Hash values are 3 and 0 ~
 - All the bits in the filter are set to 1 → False
 Positive
- Query: Tiger
 - Hash values are 0 and 15
 - All the bits in the filter are set to 0 → True Negative

- Query: Monkey
 - Hash values are 5 and 6
 - All the bits in the filter are set to 0 → True Negative
- Query: Snake
 - Hash values are 6 and 9
 - NOT all the bits in the filter are set to 1 → True Negative
- Bloom Filter Analysis
 - Given a Bloom Filter with **n bits** and uses k hash functions that are uniform and independent
 - What is the probability that a bit in the filter is 1, assuming one hash function?

Probability is $\frac{1}{n}$

• What is the probability that a bit in the filter is 0, assuming one hash function?

Probability is
$$1 - \frac{1}{n}$$

• What is the probability that a bit in the filter is 0, after **m items** have been inserted using all k hash functions?

$$p_0 = \left(1 - \frac{1}{n}\right)^{km}$$

• What is the probability that a bit in the filter is 1, after m items have been inserted using all k hash functions?

$$p_1 = 1 - p_0$$

• The probability of FALSE POSITIVE then is:

$$p_1^{\ k} = (1 - p_0)^k$$

Let us call the FALSE POSITIVE probability, FP $FP = p_1^{\ k} = (1 - (1 - \frac{1}{n})^k)^k$

- Let us rewrite the probability that a bit in the filter is 0 using e $\left(1 - \frac{1}{n}\right)^{km} = e^{\ln\left[\left(1 - \frac{1}{n}\right)^{km}\right]}$ $\left(1 - \frac{1}{n}\right)^{km} = e^{km\ln\left[\left(1 - \frac{1}{n}\right)\right]}$
- Let us approximate $\ln[(1-\frac{1}{n})]$ using Taylor expansion:

$$\ln[(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots]$$

If x is very small, them the terms after x are much smaller

Then,
$$\ln[(1-\frac{1}{n}) \approx -\frac{1}{n}]$$

And,

$$e^{km\ln[(1-\frac{1}{n})} \approx e^{-\frac{mk}{n}}$$

• So, the probability that a bit in the filter is 0:

$$p_0 = (1 - \frac{1}{n})^{km} \approx e^{-\frac{mk}{n}} = \tilde{p}_0$$

Let us approximate the FALSE POSITIVE probability, FP

$$FP = p_1^k = (1 - (1 - \frac{1}{n})^{km})^k \approx \left(1 - e^{-\frac{mk}{n}}\right)^k$$
$$\approx (1 - \widetilde{p}_0)^k$$

Note that $\frac{m}{n}$ is the number of items per slot (m is the number of items and n is the number of bits in the filter)

- How so we choose the number of hash function **k**?
 - If K is large, then
 - The filter will clog with 1's
 - If K is too small then,
 - The error does not decrease.
 - If you plot FP, the function shows a minimum
 - Compute the best k for a given m and n:
 - Take the derivative of FA (it is tricky)

$$\frac{d}{dk}(FA) = \frac{d}{dk} \left(\mathbf{1} - e^{-\frac{mk}{n}} \right)^k$$

 \rightarrow Take the log of FA: yield the same minimum

$$\frac{d}{dk}\ln(FA) = \frac{d}{dk}\ln\left(\mathbf{1} - e^{-\frac{mk}{n}}\right)^{k}$$
$$\frac{d}{dk}\ln(FA) = \frac{d}{dk}k\ln\left(\mathbf{1} - e^{-\frac{mk}{n}}\right)$$

 $\circ~$ Derivative is zero when

$$k = \ln 2 \cdot \frac{n}{m}$$

• Therefore, the best value for k is <u>best choice</u> of k: $k = \ln 2 \cdot \frac{n}{m}$

If we pick ideal (# hashes) for fixed m and n, what fraction of the filter do we expect to be set bits?

What is the optimal value for \tilde{p}_0 ?

$$e^{-\frac{mk}{n}}=\widetilde{p}_0$$

$$\Rightarrow \ln e^{-\frac{mk}{n}} = \ln \widetilde{p}_0$$

$$\rightarrow -\frac{mk}{n} = \ln \widetilde{p}_0$$

$$\Rightarrow k = -\frac{n}{m} \ln \widetilde{p}_0$$

So, the best choice of k

$$k = \ln 2 \cdot \frac{n}{m} = -\frac{n}{m} \ln \widetilde{p}_0$$

 \rightarrow $-\ln 2 = \ln \widetilde{p}_0$

→
$$\ln \tilde{p}_0 = -\ln 2 = \ln 2^{-1} = \ln \frac{1}{2}$$

→ $\widetilde{p}_0 = \frac{1}{2}$ The filter is 50% set to 1.

• Reservoir Sampling

- Reservoir sampling is a fixed-size randomized algorithm that chooses a data item without replacement, of s items from a population of unknown size n in a single pass over the items.
- It maintains a set **s** of random samples seen so far in the stream.
- New item has a certain probability $\frac{s}{n}$ of replacing an old element in the reservoir.
- Apache Spark uses reservoir sampling during the generation of values for range partitioning.
- Problem Definition:
 - Given a stream of n items, we want to sample s random items, without replacement and by using uniform probabilities.
 - n is unknown and too large for all n items to fit into main memory.
 - Data items are revealed to the algorithm over time, and the algorithm cannot look back at previous items.
- Algorithm:
 - Store all the first **s** items of the stream to a set **S**
 - Suppose we have seen n-1 items, and now the nth item arrives (n>s)
 - With probability $\frac{s}{n}$, keep the n^{th} item, else discard it
 - If we picked the **n**th item, then it replaces one of the s items in the sample S, picked uniformly at random
- Claim:
 - The algorithm maintains a sample S with the desired property: After n items, the sample contains each item seen so far with probability $\frac{s}{n}$.
 - Proof By Induction:
 - We assume that after n items, the sample contains each item see so far with probability $\frac{s}{n}$
 - We need to show that after seeing the item n+1 the sample maintains the property that

- Sample contains each element seen so far with probability $\frac{s}{n+1}$
- Base case:
 - After we see n=s items, the sample has the desired property
 - Each one of the n=s items is included in the sample with probability $\frac{s}{s} = 1$
- Inductive hypothesis:
 - After n items, the sample S contains each item seen so far with probability $\frac{s}{n}$
 - Let us now process the new item n+1
- Inductive Step:
 - For items already in S, the probability that the algorithm keeps it in S is:

$$1 - \frac{s}{n+1} + \left(\frac{s}{n+1}\right) \left(\frac{s-1}{s}\right) = \frac{n}{n+1}$$

$$1 - \frac{s}{n+1} \Rightarrow \text{Estimate } n+1 \text{ discarded}$$

$$\frac{s}{n+1} \Rightarrow \text{Estimate } n+1 \text{ NOT discarded}$$

$$\frac{s-1}{s} \Rightarrow \text{Old elements in the sample NOT picked}$$

• So, at time n, items in S were there with probability $\frac{s}{n}$

$$\left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right)$$
$$= \left(1 - \frac{s}{n+1}\right) + \left(\frac{s-1}{n+1}\right)$$

$$= 1 - \frac{s}{n+1} + \frac{s}{n+1} - \frac{1}{n+1} = \frac{n}{n+1}$$

• Time $n \rightarrow n+1$, item stayed in S with probability $\frac{n}{n+1}$

• Counting Bits Using DGIM Algorithm

- For every product x we keep 0/1 stream of whether that product was sold in a given transaction
 - How many times have we sold **x** in the last **k** sales?
- Given is a binary stream with a sliding window of length N
 - How many 1's are in the last N bits?

Datar-Gionis-Indyk-Motwani Algorithm (DGIM)

- The algorithm only stores **O**(**log**²(**N**))
- The approximate solution is never off by more than 50%
- The error factor can be further reduced by more complicated algorithm and more stored bits.
- Allow to estimate the number of 1's in the window with an error of no more than 50%
- Each bit arrives has a timestamp
- The window is divided into **buckets** of 1's and 0's
- Rules for forming the buckets:
 - All buckets should be on **power of 2**: 2⁰, 2¹, 2²,...
 - The **right side** of the bucket **should** always **start with 1** on its right end.
 - Every bucket **should have at least one 1**, otherwise no bucket can be formed.
 - The buckets **cannot be decreased** in size as we read new elements.

- There are one or two buckets of the same size up to some maximum size
- Buckets are sorted by size. Earlier buckets are not smaller than later buckets
- Buckets start disappearing when their end time is >N time units in the past.

- When a new bit comes in, drop the last bit from the old bucket if its time-end is prior to N time units before the current time. Two cases:
 - If the current bit is 0: No other changes are needed.
 - If the current bit is 1:
 - Create a new bucket of size 1 for just this bit
 - If there are now three buckets of size 1:
 - Combine the oldest buckets of size 1 into a new bucket of size 2.
 - If there are three buckets of size 2:
 - Combine the oldest buckets of size 2 into a bucket of size 4
 - o Etc.

Page 28 | 34

- Why the error is 50%?
 - Suppose the last bucket has size 2^r.
 - If we assume that half of the total number of bits of this bucket are still in the window, we are making an error of at most 2^{r-1}
 - In the sliding window, we have at least one bucket of each of the sizes less than 2^r, then the total number of bits is:

$$2^{0}+2^{1}+2^{2}+\ldots+2^{r-1} = 2^{r}-1$$

$$\Rightarrow \text{ The error is } \frac{2^{r-1}}{2^{r}-1} = \frac{1}{2}\frac{2^{r}}{2^{r}-1} \approx \frac{1}{2} = 50\%$$

• How to reduce the error?

- Instead of maintaining 1 or 2 of each bucket, we allow either r-1 or r buckets where r>2.
- Except of the largest bucket, we can have any number of rlor r buckets.
- In the sliding window, we can have up r buckets of each of the sizes less than 2^r, then the total number of bits is:

$$\mathbf{r2^{0}} + \mathbf{r2^{1}} + \mathbf{r2^{2}} + \dots + \mathbf{r2^{r-1}} = \mathbf{r(2^{r}-1)}$$

⇒ The error is $\frac{2^{r-1}}{r(2^{r}-1)} = \frac{1}{2r} \frac{2^{r}}{2^{r}-1} \approx \frac{1}{2r}$

⇒ So, the error is at most $O(\frac{1}{r})$

 By picking r approximately, we can tradeoff between number of bits we store and the error.

• Finding frequent elements

- Applications:
 - High-speed network switch: tokens are packets with source,
 - destination IP addresses and message contents.
 - Each token is an edge in graph (graph streams)
 - Each token in a point in some feature space
 - Each token is a row/column of a matrix
- Problem Description:
 - The input consists of m objects/items/tokens S=e₁, e₂,..., e_s that are seen one by one by the algorithm where e_i is an element of a universal set U of size n=|U|
 - Let f_i denote the frequency of an item i or number of times i is seen in the stream S

Consider the frequency vector:

 $f=(f_1, f_2, ..., f_n)$ where n = |U|

For k>=0 the k'th frequency moment

$$F_k = \sum_{i=1}^n f_i^k$$

• Special cases:

 \circ k=0:

$$F_0 = \sum_{i=1}^n f_i^0$$

F₀ is simply the number of distinct elements in stream (Flajolet-Martin(FM) algorithm)

• k=1:

$$F_1 = \sum_{i=1}^n f_i^1$$

- F₁ is the **length of stream** which is easy

• k=2:

$$F_2 = \sum_{i=1}^n f_i^2$$

- F₂ is **surprise number** is a measure of how **uneven the distribution** is.
- Example:

Consider the following set U=(1,2,3,4,5,6,7,8,9,..1000} And a stream S of 10 values

Case 1: S={200, 1,1,1,1,1,1,1,1,1}

 $F_2 = 200^2 + 9x1^2 = 40009$

- Case 2: S={10,10,10,10,10,10, 8, 8, 8, 8} F₂= $6x10^2+4x8^2=356$
- k=infinity
 - F_{∞} is the maximum frequency (heavy hitters prob)
- Direct Method
 - It requires memory of the order Ω(N) to store m_i for all distinct elements.
 - But we have memory limitations, and requires an algorithm to compute in much lower memory

• Alon-Matias-Szegedy (AMS) Algorithm (Works on all moments)

- AMS works for all moments
- It gives an unbiased estimate.
- Let us consider the 2nd moment for now.
- We pick and keep track of many variables X:
- For each variable X, we form a key-value pair:

- X.key: The data element i
- X.val: The count of item i
- Note this requires a count in main memory, so the number of Xs is limited
- The objective is to compute:

$$S = \sum_i m_i^2$$

where **mi is the number of times value i occurs** in the stream and **i is the number of distinct elements** in the stream

- Expectation Analysis
 - The second moment is $S = \sum_i m_i^2$
 - Our estimate is
 - S=f(X)=n(2c-1)
 - Let us computer the expectation of our estimate:
 - ct is the number of times <u>item at time</u> t appears from time t onwards (c1=ma, c2=ma-1, c3=mb)

If $\mathbf{m}_{\mathbf{a}}$ is the total count of a in the stream

mi is the total count of item i in the stream, assuming a stream of length **n**

$$E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$$

Where

Time t when last item i is seen $c_t = 1$ Time t when second last item i is seen $c_t = 2$... Time t when the first item i is seen $c_t = m_i$

• Sum the times by the value seen (By distinct item)

$$\mathbf{E}[\mathbf{f}(\mathbf{X})] = \frac{1}{n} \sum_{i} \sum_{i=1}^{m_i} n (1 + 3 + 5 + \dots + 2m_i - 1)$$

$$=\frac{1}{n}\sum_{i}n\sum_{i=1}^{m_{i}}(2i-1)=\frac{1}{n}\sum_{i}n(\sum_{i=1}^{m_{i}}2i-\sum_{i=1}^{m_{i}}1)$$

$$= \sum_{i} 2 \frac{m_{i}(m_{i}+1)}{2} - m_{i} = \sum_{i} m_{i}^{2} + m_{i} - m_{i} = \sum_{i} m_{i}^{2}$$

$$\Rightarrow \mathbf{E}[\mathbf{f}(\mathbf{X})] = \sum_{i} m_{i}^{2} = S$$

This is the second moment

- High order moments
 - To estimate the kth moment, we use the same algorithm but change the estimate:
 - For k=2, we used n(2.c-1)
 - For k=3, we use: $n(3c^2+-3c+1)$ where c=X.val
 - Explanation:

- For k=2:
 - We used the following estimate function:

• S=f(X) = n(2c-1)

And we have shown that $\mathbf{E}[\mathbf{f}(\mathbf{X})] = \sum_{i} m_{i}^{2} = S$

• Note that the estimate function:

•
$$S=f(X) = n(2c-1) = n(c^2-(c-1)^2)$$

• For k = 3:

•
$$S=f(X) = n(c^3-(c-1)^3)=n(3c^2-3c+1)$$

• For any k:

• $S=f(X) = n(c^{k}-(c-1)^{k})$

- How do we handle never ending stream?
 - The estimate function we used assume a stream of n items:

$$S=f(X) = n(2c-1)$$

- Assume we can only store k counts. We must ignore some X's out as time goes on.
- Objective:
 - Each starting time t is selected with probability $\frac{\mathbf{R}}{\mathbf{r}}$
- Solution:
 - Use fixed-size sampling Reservoir Sampling
 - Choose the first k times for k variables
 - When the nth element arrives (n>k), choose it with probability $\frac{k}{2}$
 - If you choose it, throw one of the previous stored variable X out with equal probability.