
P a g e 1 | 34

Steaming Data

• Objectives... 2

• What is a data stream? ... 2

• Streaming Algorithms .. 4

• Distinct element counting problem .. 9

• Bloom Filters: Filtering Data Stream Algorithm 14

• Reservoir Sampling .. 23

• Counting Bits Using DGIM Algorithm ... 26

• Finding frequent elements ... 30

• Alon-Matias-Szegedy (AMS) Algorithm (Works on all moments) 31

P a g e 2 | 34

• Objectives

o Understand the distribution of a data stream

o Data is continuous and unbound

o Hard to process with algorithms for batch data

o Explore stream processing to analyze and process big data in real

time to gain current insights to make appropriate decisions.

o The system cannot store the entire stream

o How to process the unbound data stream using limited resources?

o Queries on streams can be very useful: Monitoring, alerts, automated

triggering of actions

• What is a data stream?

▪ Streaming data is used to describe unbounded, time-ordered

large sequence data generated continuously at high velocity.

▪ “A data stream is a real-time, continuous, ordered

(implicitly by arrival time or explicitly by timestamp)

sequence of items. It is impossible to control the order in

which items arrive, nor is it feasible to locally store a stream

in its entirety.” - Golab & Oszu

▪ Data streams (also called tuples) are:

• infinite – one does not know the size of the data

• non-stationary – the distributions of the data can

change over time (seasonally, daily, hourly)

Time flow
Sliding window

P a g e 3 | 34

▪ Applications

▪ Counting distinct elements: Number of distinct elements in

the last k elements of the stream

▪ Sample data from a stream

▪ Filtering items: Number of distinct elements in the last k

elements of the stream

▪ Estimating moments: Estimate avg./std. dev. of last k

elements

▪ Queries over sliding windows: Number of items of type x in

the last k elements of the stream

▪ Mining query streams: Google wants to know what queries

are most frequent than yesterday

▪ Window size = one day and count the frequency of queries

▪ Mining click streams: Yahoo wants to know which of its

pages are getting an unusual number of hits in the past hour.

▪ Mining social networks: Looking for trending topics on

twitter, Facebook, etc.

P a g e 4 | 34

▪ Monitor packets at network switch: detect denial of service

attaches.

• Streaming Algorithms

▪ A data stream is a sequence of data

S = s1, s2, . . . , si, . . . ,

where each item si is an item in the universe U, where |U| = N.

▪ A streaming algorithm A takes S as input and needs to compute some

function f of S.

▪ Processing constraints:

▪ limited memory

▪ limited processing time per item

▪ Streaming data can only be read once.

▪ Streaming algorithms produces approximate answer due to

processing constraints.

▪ Streaming algorithms efficiency measurements:

▪ How much data you can store at a time

▪ Processing time for an input data stream

▪ Number of passes to process a data stream

▪ Streaming algorithm approaches:

▪ There are several approaches to process streaming data such

sketching, randomized algorithms, etc.

▪ We are going to look at two approaches:

▪ Random sampling

▪ Sliding windows

▪ Window-based streaming:

▪ It is a technique for reducing the complexity of algorithms.

▪ Make decisions based only on recent data of sliding window

size w

▪ An element arriving at time t expires at time t + w

▪ Data elements are grouped within a window that slides

across the data stream according to a specified interval.

A B C D E F G H I

P a g e 5 | 34

A B C D E F G H I

▪ Random sampling

▪ It consists of selecting a group from a population to

represent the whole population.

▪ Sample without knowing the total length in advance

▪ Sampling techniques:

• Probabilistic random sampling:

▪ It is a technique in which each member in a

population has an equal chance of being selected

as a sample(unbiased)

• Non-probabilistic non-random sampling

▪ It uses arbitrary sample selection instead of

sampling based on a randomized selection

▪ Probabilistic sampling techniques:

• Simple random sampling:

▪ It is a random and automated method to select a

sample.

▪ This sampling method assigns numbers to the

individuals and then randomly chooses numbers.

▪ The samples are chosen in two ways:

• Through a lottery system

• Random number generation software.

• Systematic sampling:

▪ Data elements are selected at regular intervals

from the sampling data. The intervals are chosen

to ensure an adequate sample size. If you need a

sample size s from a population of size n, you

should select every
𝑛

𝑠
th data item for the sample.

▪ Example:

• Suppose you want to sample 10 students from a

list of 50 students:
50

10
 =5

P a g e 6 | 34

• So, every 5th student is chosen after a

random starting point between 1 and 5.

• If the ransom number is 4, then the students

selected are: 4, 8, 12, 16,18,22,24, 28,

32,36.

• Stratified sampling:

▪ It divides the population into smaller groups, or

strata, based on shared characteristics-two strata:

Male vs. Female.

▪ The groups of the population are based on certain

criteria, then randomly choose elements from

each in proportion to the group's size.

• Clustered sampling:

▪ It is also known as area sampling.

▪ It is used when the population is very large.

▪ It is a probability sampling technique used when

different subsets of groups are present in a larger

population.

▪ Sampling is done in three steps:

• Step 1: Divide the population into naturally

non-overlapping clusters where each cluster

is a mini representation of the entire

population.

P a g e 7 | 34

• Step 2: Simple clustered sampling:

o Randomly choose k clusters to form

your sample.

o Stop if you are happy with your

sample. Otherwise, continue to Step 3.

• Step 3: Multi-stage clustered sampling:

o Further divide each cluster into new

clusters and go step 2.

▪ Examples of streaming algorithms:

▪ Filtering a data stream:

▪ Select elements with property x from the stream

▪ Bloom Filter algorithm

▪ Counting distinct elements:

▪ Number of distinct elements in the last k elements of the

stream.

▪ Flajolet Martin (FM) Algorithm

P a g e 8 | 34

▪ Finding frequent elements:

▪ Finding which element is repeatedly coming-which user is

repeatedly visiting the site or how many times product x was

sold (Amazon)

▪ Datar Gionis Indyk Motwani (DGIM) Algorithm

▪ Estimating moments:

▪ Estimate avg/std. dev. of last k elements.

▪ Alon-Matias-Szegedy (AMS) Algorithm

▪ Finding data items with certain properties:

▪ Queries on google searches in a specific month

▪ Products bought at Walmart during the Christmas season

▪ Reservoir Sampling

P a g e 9 | 34

• Distinct element counting problem

o Count how many people are visiting a web site.

▪ Count how many distinct IP numbers are connecting to the server

that hosts the web site.

o Count the number of distinct products sold last week.

o Naïve Approach:

▪ Clearly, using O(N) memory space, the problem can be solved

easily in O(N log N) time by sorting, or O(N) expected time with

hashing.

▪ With big data: space is limited.

▪ We need the following:

• An unbiased estimator of the counts

• Ok to have an error in the estimation as trade-off for space.

▪ Flajolet Martin (FM) Algorithm

▪ Flajolet Martin Algorithm, also known as FM algorithm, is

an approximation algorithm.

▪ It approximates the number of unique elements in a data

stream in one pass with less memory space.

▪ If the stream contains n elements with m of them unique,

FM runs in O(n) times and needs O(log(m)) memory.

▪ Algorithm:

▪ Assume we have N items in the universe

▪ Pick a hash function h mapping the N items to at least

log2(N) bits

▪ for each stream item s,

▪ calculate h(s)

▪ Convert h(s) to a binary representation

▪ Let r(s) be the number of trailing 0s in the bit

representation of h(s)

//for instance, assume h(s) = 12, bit representation 1100

//r(a) is then equal to 2

• keep R = max(r(s)) over the entire stream

▪ Estimator: the number of distinct items seems thus far is

2R

P a g e 10 | 34

▪ Example:

• Given a set S={1,3,2,1,2,3,4,3,1,2,3,1} and a hash function:

▪ h(x)=(6x+1) mod 5

x H(x) Binary r(a) x H(x) Binary r(a)

1 2 00010 1 4 0 00000 5

3 4 00100 2 3 4 00100 2

2 3 00011 0 5 1 00001 0

3 4 00100 2 2 3 00011 0

2 3 00011 0 3 4 00100 2

3 4 00100 2 1 2 00010 1

So, R = max(r(a)) = 5

And the number of distinct elements = N=2R=25=32

▪ Consider another has function: h(x)=(x+7) mod 5

x H(x) Binary r(a) x H(x) Binary r(a)

1 3 00011 0 4 1 00001 2

4 1 00001 0 6 3 00011 0

6 3 00011 0 5 2 00010 1

9 1 00001 0 5 2 00010 1

2 4 00101 0 2 4 00100 2

1 3 00011 0 9 1 00001 0

P a g e 11 | 34

So, R = max(r(a)) = 2

And the number of distinct elements = N=2R=22=4

▪ Why FM algorithm works:

▪ The hash function, h(x), maps x with equal probability to any one

of the N values

▪ Then h(x) is a sequence of log2(N) bits.

▪ The probability that h(x) ends r 0’s is 2-r.

▪ For r=1

• 2-1=
1

2
=50% of the x’s hash to **..**0

▪ For r=2

• 2-2=
1

4
=25% of the x’s hash to **..**00

▪ If the longest tail of 0’s is r=2, item hash ending with **100,

then

• We have probably seen bout 4=22 distinct items so far.

▪ For r

•
𝟏

𝟐𝒓 of all hash values have their binary representation end

in r 0’s.

• if the hash function generated an integer ending in r 0’s,

intuitively, the number of unique strings is around 2r

▪ So, the probability that a given h(x) ends with r 0’s is 2-r

➔ And the probability of NOT seeing a tail of r 0’s among

m elements in the stream:

(𝟏 − 𝟐−𝒓)𝒎

 The probability of all m data items ends in fewer than r 0’s

▪ Let us approximate (𝟏 − 𝟐−𝒓)𝒎:

(𝟏 − 𝟐−𝒓)𝒎 = 𝒆𝐥𝐧(𝟏−𝟐−𝒓)𝒎
= 𝒆𝐦𝐥𝐧(𝟏−𝟐−𝒓)

P a g e 12 | 34

• Let us approximate ln[(1 − 𝟐−𝒓) using Taylor expansion:

ln[(1 + 𝒙) = 𝒙 −
𝒙𝟐

𝟐
+

𝒙𝟑

𝟑
+ …

ln[(1 − 𝟐−𝒓
) ≈ −𝟐−𝒓

 So,

(𝟏 − 𝟐−𝒓)𝒎 = 𝒆𝐦𝐈𝐧(𝟏−𝟐−𝒓) ≈ 𝒆− 𝐦 𝟐−𝒓

▪ So, the probability of NOT finding a tail of r 0’s is:

• If m<<𝟐𝒓then the probability tends to 1

 (𝟏 − 𝟐−𝒓)𝒎 ≈ 𝒆− 𝐦 𝟐−𝒓
= 𝟏 since

𝒎

𝟐𝒓 → 𝟎

The probability of finding a tail of length r 0’s tends to 0

• If m>>𝟐𝒓then the probability tends to 0

 (𝟏 − 𝟐−𝒓)𝒎 ≈ 𝒆− 𝐦 𝟐−𝒓
= 𝟎 since

𝒎

𝟐𝒓 → ∞

The probability of finding a tail of length r 0’s tends to 1

▪ In summary:

• Let m be the number of distinct elements seen so far in

the stream (Our objective is to estimate m)

• We have shown that the probability of finding a tail of

r 0’s is:

o 1 if m>>𝟐𝒓

o 0 if m<<𝟐𝒓

P a g e 13 | 34

• In practice the probability of seeing a tail of r 0’s is

neither 1 or 0

➔ 𝟐𝒓 will always be around m

P a g e 14 | 34

• Bloom Filters: Filtering Data Stream Algorithm

▪ It has been around for over 50 years.

▪ Check if some data item is NOT present in a very big list

▪ Check if a username exists without hitting performing a full database

search – especially for large databases

▪ How to save time, space, and disk I/Os in checking if a data element

exists?

▪ Filter the non-existence of a username without a full search:

Constant TIME and SPACE.

▪ Applications:

▪ Google Chrome used to use Bloom filters to detect malicious

URLs

▪ Facebook and Gmail use Bloom Filter to check if a user exists.

▪ What is a Bloom Filter?

▪ It is a space efficient probabilistic data structure developed by

Burton Howard Bloom back in 1970.

▪ It used to test whether an item is a member of a set.

▪ It never generates a FALSE NEGATIVE: 0%

▪ It has some FALSE POSITIVE: It confirms that an item exists

while it does not.

 Actual Positive Actual Negative

Predicted

Positive

“A maybe

answer”

True Positive: 1-p

False Positive: p*

The item has never

been inserted, yet we

are returning TRUE.

Predicted

Negative
False Negative: 0% True Negative:100%

* Minimize the probability p

▪ No deletion: Cannot delete an item from the filter

P a g e 15 | 34

▪ Cannot list the inserted items in the filter.

▪ How does a Bloom Filter work?

▪ Given a set S of m items.

▪ A Bloom filter is a n-bit array initialized to 0’s:

▪ It uses a collection of k hash function h1, h2, h3, …, hk

▪ Insertions:

• Step1: Calculate indices using k hash functions

o Each of the k hash functions maps an item from S

to one of the n-bit array

• Step 2: Set bits to 1 at indices calculated in step 1

▪ Query: Bloom Filter Lookup

▪ Suppose an item ai appears in the data stream and we want

to know if it has been seen before.

▪ Example:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P a g e 16 | 34

▪ Given a set S of string characters (usernames):

S={cat, dog, bird, lion. Frog}

▪ And the following two hash functions h1 and h2.

H1(word) = (ASCII(first char)+ASCII(second char)+ASCII(last)) mod 16

H2(word) = ((ASCII(first char))2+ASCII(second char)+ASCII(last)- ASCII(first char))

mod 16

Stream Item H1 H2

Cat 8 9

Dog 10 0

Bird 15 4

Lion 3 4

Frog 15 4

▪ Insertions:

• cat: set bit 8 and 9

• dog: set bit 0 and 10

• bird: set bit 4 and 15

• lion: set bit 3 and 4

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P a g e 17 | 34

• frog: set bit 4 and 15

• Bloom Filter Final State:

▪ Check if an item in available:

• Use the following new items (usernames)

Stream Item H1 H2

ant 3 0

tiger 15 0

monkey 5 6

snake 6 9

• Query: ant

o Hash values are 3 and 0

o All the bits in the filter are set to 1 ➔ False

Positive

• Query: Tiger

o Hash values are 0 and 15

o All the bits in the filter are set to 0 ➔ True

Negative

1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P a g e 18 | 34

• Query: Monkey

o Hash values are 5 and 6

o All the bits in the filter are set to 0 ➔ True

Negative

• Query: Snake

o Hash values are 6 and 9

o NOT all the bits in the filter are set to 1 ➔ True

Negative

▪ Bloom Filter – Analysis

▪ Given a Bloom Filter with n bits and uses k hash functions that

are uniform and independent

▪ What is the probability that a bit in the filter is 1, assuming one

hash function?

Probability is
𝟏

𝒏

▪ What is the probability that a bit in the filter is 0, assuming one

hash function?

Probability is 1 −
𝟏

𝒏

▪ What is the probability that a bit in the filter is 0, after m items

have been inserted using all k hash functions?

 𝑝0 = (1 −
𝟏

𝒏
)

𝒌𝒎

▪ What is the probability that a bit in the filter is 1, after m items

have been inserted using all k hash functions?

𝑝1 = 1 − 𝑝0

P a g e 19 | 34

▪ The probability of FALSE POSITIVE then is:

𝑝1
𝑘 = (1 − 𝑝0)𝑘

Let us call the FALSE POSITIVE probability, FP

𝐹𝑃 = 𝑝1
𝑘 = (1 − (1 −

𝟏

𝒏
)

𝒌𝒎

)𝑘

▪ Let us rewrite the probability that a bit in the filter is 0 using e

(1 −
𝟏

𝒏
)

𝒌𝒎

= 𝑒ln[(1−
𝟏
𝒏)

𝒌𝒎

]

(1 −
𝟏

𝒏
)

𝒌𝒎

= 𝑒𝑘𝑚 ln[(1−
𝟏
𝒏)

▪ Let us approximate ln[(1 −
𝟏

𝒏
) using Taylor expansion:

ln[(1 + 𝒙) = 𝒙 −
𝒙𝟐

𝟐
+

𝒙𝟑

𝟑
+ …

If x is very small, them the terms after x are much smaller

Then, ln[(1 −
𝟏

𝒏
) ≈ −

1

𝑛

And,

P a g e 20 | 34

𝑒𝑘𝑚 ln[(1−
𝟏
𝒏) ≈ 𝑒−

𝑚𝑘
𝑛

▪ So, the probability that a bit in the filter is 0:

𝑝0 = (1 −
𝟏

𝒏
)

𝒌𝒎

≈ 𝑒−
𝑚𝑘

𝑛 = �̃�0

▪ Let us approximate the FALSE POSITIVE probability, FP

𝑭𝑷 = 𝒑𝟏
𝒌 = (𝟏 − (𝟏 −

𝟏

𝒏
)

𝒌𝒎

)𝒌 ≈ (𝟏 − 𝒆−
𝒎𝒌
𝒏)

𝒌

≈ (𝟏 − �̃�𝟎)𝒌

Note that
𝒎

𝒏
is the number of items per slot (m is the

number of items and n is the number of bits in the

filter)

▪ How so we choose the number of hash function k?

▪ If K is large, then

• The filter will clog with 1’s

▪ If K is too small then,

• The error does not decrease.

▪ If you plot FP, the function shows a minimum

▪ Compute the best k for a given m and n:

• Take the derivative of FA (it is tricky)

𝑑

𝑑𝑘
(𝐹𝐴) =

𝑑

𝑑𝑘
(𝟏 − 𝒆−

𝒎𝒌
𝒏)

𝒌

 ➔ Take the log of FA: yield the same minimum

P a g e 21 | 34

𝑑

𝑑𝑘
ln(𝐹𝐴) =

𝑑

𝑑𝑘
ln (𝟏 − 𝒆−

𝒎𝒌
𝒏)

𝒌

𝑑

𝑑𝑘
ln(𝐹𝐴) =

𝑑

𝑑𝑘
𝑘In (𝟏 − 𝒆−

𝒎𝒌
𝒏)

o Derivative is zero when

𝒌 = 𝐥𝐧 𝟐 .
𝒏

𝒎

• Therefore, the best value for k is best choice of k:

𝒌 = 𝐥𝐧 𝟐 .
𝒏

𝒎

If we pick ideal (# hashes) for fixed m and n, what

fraction of the filter do we expect to be set bits?

What is the optimal value for �̃�𝟎?

𝒆−
𝒎𝒌
𝒏 = �̃�𝟎

 ➔ 𝐥𝐧 𝒆−
𝒎𝒌

𝒏 = 𝐥𝐧 �̃�𝟎

 ➔ −
𝒎𝒌

𝒏
= 𝐥𝐧 �̃�𝟎

 ➔ 𝒌 = −
𝒏

𝒎
𝐥𝐧 �̃�𝟎

So, the best choice of k

𝒌 = 𝐥𝐧 𝟐 .
𝒏

𝒎
= −

𝒏

𝒎
𝐥𝐧 �̃�𝟎

 ➔ − 𝐥𝐧 𝟐 = 𝐥𝐧 �̃�𝟎

P a g e 22 | 34

 ➔ 𝐥𝐧 �̃�𝟎 = − 𝐥𝐧 𝟐 = 𝐥𝐧 𝟐−𝟏 = 𝐥𝐧
𝟏

𝟐

➔ �̃�𝟎 =
𝟏

𝟐

The filter is 50% set to 1.

P a g e 23 | 34

• Reservoir Sampling

▪ Reservoir sampling is a fixed-size randomized algorithm that chooses

a data item without replacement, of s items from a population of

unknown size n in a single pass over the items.

▪ It maintains a set s of random samples seen so far in the stream.

▪ New item has a certain probability
𝐬

𝐧
 of replacing an old element in the

reservoir.

▪ Apache Spark uses reservoir sampling during the generation of values

for range partitioning.

▪ Problem Definition:

▪ Given a stream of n items, we want to sample s random items,

without replacement and by using uniform probabilities.

▪ n is unknown and too large for all n items to fit into main

memory.

▪ Data items are revealed to the algorithm over time, and the

algorithm cannot look back at previous items.

▪ Algorithm:

▪ Store all the first s items of the stream to a set S

▪ Suppose we have seen n-1 items, and now the nth item

arrives (n>s)

• With probability
𝐬

𝐧
, keep the nth item, else discard it

• If we picked the nth item, then it replaces one of the s

items in the sample S, picked uniformly at random

▪ Claim:

▪ The algorithm maintains a sample S with the desired property:

After n items, the sample contains each item seen so far with

probability
𝐬

𝐧
.

▪ Proof By Induction:

• We assume that after n items, the sample contains each item

see so far with probability
𝐬

𝐧

• We need to show that after seeing the item n+1 the

sample maintains the property that

P a g e 24 | 34

o Sample contains each element seen so far

with probability
𝐬

𝐧+𝟏

▪ Base case:
• After we see n=s items, the sample has the desired

property

o Each one of the n=s items is included in the

sample with probability
𝐬

𝐬
= 𝟏

▪ Inductive hypothesis:
• After n items, the sample S contains each item seen so

far with probability
𝐬

𝐧

• Let us now process the new item n+1

▪ Inductive Step:

• For items already in S, the probability that the

algorithm keeps it in S is:

(1 −
s

n + 1
) + (

s

n + 1
) (

s − 1

s
) =

n

n + 1

1 −
s

n+1
 ➔Estimate n+1 discarded

s

n+1
 ➔Estimate n+1 NOT discarded

s−1

s
 ➔Old elements in the sample NOT picked

• So, at time n, items in S were there with probability
𝐬

𝐧

(1 −
𝑠

𝑛 + 1
) + (

𝑠

𝑛 + 1
) (

𝑠 − 1

𝑠
)

= (1 −
𝑠

𝑛 + 1
) + (

𝑠 − 1

𝑛 + 1
)

P a g e 25 | 34

= 1 −
𝑠

𝑛 + 1
+

𝑠

𝑛 + 1
−

1

𝑛 + 1

 =
𝑛

𝑛+1

• Time n ➔ n+1, item stayed in S with probability
𝐧

𝐧+𝟏

P a g e 26 | 34

• Counting Bits Using DGIM Algorithm

▪ For every product x we keep 0/1 stream of whether that product was

sold in a given transaction

• How many times have we sold x in the last k sales?

▪ Given is a binary stream with a sliding window of length N

• How many 1’s are in the last N bits?

▪ Datar-Gionis-Indyk-Motwani Algorithm (DGIM)

• The algorithm only stores 𝐎(𝐥𝐨𝐠𝟐(𝐍))

• The approximate solution is never off by more than 50%

• The error factor can be further reduced by more complicated

algorithm and more stored bits.

• Allow to estimate the number of 1’s in the window with an error

of no more than 50%

• Each bit arrives has a timestamp

• The window is divided into buckets of 1’s and 0’s

• Rules for forming the buckets:

▪ All buckets should be on power of 2: 20, 21, 22,…

▪ The right side of the bucket should always start with 1 on

its right end.

▪ Every bucket should have at least one 1, otherwise no

bucket can be formed.

▪ The buckets cannot be decreased in size as we read new

elements.

P a g e 27 | 34

▪ There are one or two buckets of the same size up to some

maximum size

▪ Buckets are sorted by size. Earlier buckets are not smaller

than later buckets

▪ Buckets start disappearing when their end time is >N time

units in the past.

▪ When a new bit comes in, drop the last bit from the old

bucket if its time-end is prior to N time units before the

current time. Two cases:

• If the current bit is 0: No other changes are needed.

• If the current bit is 1:

o Create a new bucket of size 1 for just this bit

o If there are now three buckets of size 1:

▪ Combine the oldest buckets of size 1 into a

new bucket of size 2.

o If there are three buckets of size 2:

▪ Combine the oldest buckets of size 2 into a

bucket of size 4

o Etc.

P a g e 28 | 34

P a g e 29 | 34

• Why the error is 50%?

▪ Suppose the last bucket has size 2r.

▪ If we assume that half of the total number of bits of this

bucket are still in the window, we are making an error of at

most 2r-1

▪ In the sliding window, we have at least one bucket of each of

the sizes less than 2r, then the total number of bits is:

20+ 21+ 22+…+2r-1 = 2r-1

 The error is
𝟐𝒓−𝟏

𝟐𝒓−𝟏
=

𝟏

𝟐

𝟐𝒓

𝟐𝒓−𝟏
≈

𝟏

𝟐
= 𝟓𝟎%

▪ How to reduce the error?

▪ Instead of maintaining 1 or 2 of each bucket, we allow either

r-1 or r buckets where r>2.

▪ Except of the largest bucket, we can have any number of r-

1or r buckets.

▪ In the sliding window, we can have up r buckets of each of

the sizes less than 2r, then the total number of bits is:

r20+ r21+ r22+…+r2r-1 = r(2r-1)

 The error is
𝟐𝒓−𝟏

𝐫(𝟐𝒓−𝟏)
=

𝟏

𝟐𝒓

𝟐𝒓

𝟐𝒓−𝟏
≈

𝟏

𝟐𝒓
`

 So, the error is at most 𝑂(
1

𝑟
)

▪ By picking r approximately, we can tradeoff between

number of bits we store and the error.

P a g e 30 | 34

• Finding frequent elements

o Applications:

▪ High-speed network switch: tokens are packets with source,

▪ destination IP addresses and message contents.

▪ Each token is an edge in graph (graph streams)

▪ Each token in a point in some feature space

▪ Each token is a row/column of a matrix

o Problem Description:

▪ The input consists of m objects/items/tokens S=e1, e2,..., es that are

seen one by one by the algorithm where ei is an element of a

universal set U of size n=|U|

▪ Let fi denote the frequency of an item i or number of times i is seen

in the stream S

Consider the frequency vector:

f=(f1, f2, … , fn) where n = |U|

For k>=0 the k’th frequency moment

Fk = ∑ fi
k

n

i=1

▪ Special cases:

o k=0:

F0 = ∑ fi
0

n

i=1

- F0 is simply the number of distinct elements in stream

(Flajolet-Martin(FM) algorithm)

o k=1:

F1 = ∑ fi
1

n

i=1

- F1 is the length of stream which is easy

P a g e 31 | 34

o k=2:

F2 = ∑ fi
2

n

i=1

- F2 is surprise number is a measure of how uneven the

distribution is.

- Example:

Consider the following set U=(1,2,3,4,5,6,7,8,9,..1000}

And a stream S of 10 values

Case 1: S={200, 1,1,1,1,1,1,1,1,1}

F2= 2002 + 9x12 = 40009

Case 2: S={10,10,10,10,10,10, 8, 8, 8, 8}

F2= 6x102+4x82=356

o k=infinity

- F is the maximum frequency (heavy hitters prob)

o Direct Method

▪ It requires memory of the order Ω(N) to store mi for all distinct

elements.

▪ But we have memory limitations, and requires an algorithm to

compute in much lower memory

• Alon-Matias-Szegedy (AMS) Algorithm (Works on all moments)

o AMS works for all moments

o It gives an unbiased estimate.

o Let us consider the 2nd moment for now.

o We pick and keep track of many variables X:

o For each variable X, we form a key-value pair:

P a g e 32 | 34

• X.key: The data element i

• X.val: The count of item i

▪ Note this requires a count in main memory, so the number of Xs is

limited

▪ The objective is to compute:

𝑺 = ∑ 𝒎𝒊
𝟐

𝒊

where mi is the number of times value i occurs in the

stream and i is the number of distinct elements in the

stream

▪ Expectation Analysis

• The second moment is 𝑺 = ∑ 𝒎𝒊
𝟐

𝒊

• Our estimate is

• S=f(X)=n(2c-1)

• Let us computer the expectation of our estimate:

• ct is the number of times item at time t appears from time t

onwards (c1=ma, c2=ma-1, c3=mb)

If ma is the total count of a in the stream

P a g e 33 | 34

mi is the total count of item i in the stream, assuming a

stream of length n

𝐄[𝐟(𝐗)] =
𝟏

𝐧
∑ 𝐧(𝟐𝐜𝒕 − 𝟏)

𝐧

𝐭=𝟏

Where

Time t when last item i is seen 𝒄𝒕 = 𝟏

Time t when second last item i is seen 𝒄𝒕 = 𝟐

…

Time t when the first item i is seen 𝒄𝒕 = 𝒎𝒊

• Sum the times by the value seen (By distinct item)

 𝐄[𝐟(𝐗)] =
𝟏

𝐧
∑ ∑ 𝒏 (𝟏 + 𝟑 + 𝟓 + ⋯ + 𝟐𝒎𝒊 − 𝟏)

𝒎𝒊

𝒊=𝟏
𝒊

 =
𝟏

𝐧
∑ 𝒏 ∑(𝟐𝒊 − 𝟏)

𝒎𝒊

𝒊=𝟏
𝒊

=
𝟏

𝐧
∑ 𝒏(∑ 𝟐𝒊 − ∑ 𝟏

𝒎𝒊

𝒊=𝟏

)

𝒎𝒊

𝒊=𝟏
𝒊

 = ∑ 𝟐
𝒎𝒊(𝒎𝒊 + 𝟏)

𝟐
−𝒎𝒊

𝒊
= ∑ 𝒎𝒊

𝟐 + 𝒎𝒊 − 𝒎𝒊
𝒊

= ∑ 𝒎𝒊
𝟐

𝒊

 𝐄[𝐟(𝐗)] = ∑ 𝒎𝒊
𝟐

𝒊 = 𝑺
This is the second moment

o High order moments

▪ To estimate the kth moment, we use the same algorithm but change

the estimate:

▪ For k=2, we used n(2.c-1)

▪ For k=3, we use: n(3c2+-3c+1) where c=X.val

▪ Explanation:

P a g e 34 | 34

• For k=2:

o We used the following estimate function:

• S=f(X) = n(2c-1)

And we have shown that 𝐄[𝐟(𝐗)] = ∑ 𝒎𝒊
𝟐

𝒊 = 𝑺

o Note that the estimate function:

• S=f(X) = n(2c-1) = n(c2-(c-1)2)

o For k = 3:

• S=f(X) = n(c3-(c-1)3)=n(3c2-3c+1)

o For any k:

• S=f(X) = n(ck-(c-1)k)

o How do we handle never ending stream?

▪ The estimate function we used assume a stream of n items:

S=f(X) = n(2c-1)

▪ Assume we can only store k counts. We must ignore some X’s out as

time goes on.

▪ Objective:

• Each starting time t is selected with probability
𝐤

𝐧

• Solution:

• Use fixed-size sampling – Reservoir Sampling

• Choose the first k times for k variables

• When the nth element arrives (n>k), choose it with probability
k

n

• If you choose it, throw one of the previous stored variable X out

with equal probability.

