Steaming Data

(@) o] 1101 1YL PR SPROPR 2
What IS @ data StrEAM?ccueeiiee e 2
Streaming AlQONtNMScooviiiiic e 4
Distinct element counting ProbIemM..........ccccoviieiiieii s 9
Bloom Filters: Filtering Data Stream Algorithmccccocoeeiieinennnenn, 14
Reservoir SAmMpPliNg.......cccooe i 23
Counting Bits Using DGIM Algorithmccccooveiiiiiiieie e 26
Finding frequent elementscco v 30
Alon-Matias-Szegedy (AMS) Algorithm (Works on all moments).......... 31

1|34

e Objectives
o Understand the distribution of a data stream
o Data is continuous and unbound
o Hard to process with algorithms for batch data
o Explore stream processing to analyze and process big data in real
time to gain current insights to make appropriate decisions.
The system cannot store the entire stream
How to process the unbound data stream using limited resources?
o Queries on streams can be very useful: Monitoring, alerts, automated
triggering of actions

o O

e What is a data stream?

= Streaming data is used to describe unbounded, time-ordered
large sequence data generated continuously at high velocity.

= “A data stream is a real-time, continuous, ordered
(implicitly by arrival time or explicitly by timestamp)
sequence of items. It is impossible to control the order in
which items arrive, nor is it feasible to locally store a stream
in its entirety.” - Golab & Oszu

(@)

e © o b Oo
mE %
H o B - 9 O

Time flow

Sliding window
—

= Data streams (also called tuples) are:
e infinite — one does not know the size of the data
e non-stationary — the distributions of the data can
change over time (seasonally, daily, hourly)

234

Data Streams

Queries

x1 | x2 | =3
vl | ¥2 | ¥3
z1 22 z3

= Applications

Counting distinct elements: Number of distinct elements in
the last k elements of the stream

Sample data from a stream

Filtering items: Number of distinct elements in the last k
elements of the stream

Estimating moments: Estimate avg./std. dev. of last k
elements

Queries over sliding windows: Number of items of type x in
the last k elements of the stream

Mining query streams: Google wants to know what queries
are most frequent than yesterday

Window size = one day and count the frequency of queries
Mining click streams: Yahoo wants to know which of its
pages are getting an unusual number of hits in the past hour.
Mining social networks: Looking for trending topics on
twitter, Facebook, etc.

Page 3|34

= Monitor packets at network switch: detect denial of service
attaches.

e Streaming Algorithms
= A data stream is a sequence of data
S=51,S,...,Si...,
where each item s; is an item in the universe U, where |U| = N.
= A streaming algorithm A takes S as input and needs to compute some
function f of S.
= Processing constraints:
= limited memory
= |imited processing time per item
= Streaming data can only be read once.
= Streaming algorithms produces approximate answer due to
processing constraints.
= Streaming algorithms efficiency measurements:
= How much data you can store at a time
= Processing time for an input data stream
= Number of passes to process a data stream
= Streaming algorithm approaches:
= There are several approaches to process streaming data such
sketching, randomized algorithms, etc.
= We are going to look at two approaches:
» Random sampling
= Sliding windows
= Window-based streaming:
= |t is atechnique for reducing the complexity of algorithms.
= Make decisions based only on recent data of sliding window
size w
= An element arriving at time t expires at time t + w
= Data elements are grouped within a window that slides
across the data stream according to a specified interval.

A |B C D E F G H I

4)34

A B C D E F G H I

= Random sampling
= |t consists of selecting a group from a population to
represent the whole population.
= Sample without knowing the total length in advance
= Sampling techniques:
e Probabilistic random sampling:
= |t is atechnique in which each member in a
population has an equal chance of being selected
as a sample(unbiased)
e Non-probabilistic non-random sampling
= |t uses arbitrary sample selection instead of
sampling based on a randomized selection
= Probabilistic sampling techniques:
e Simple random sampling:
= |tisarandom and automated method to select a
sample.
= This sampling method assigns numbers to the
individuals and then randomly chooses numbers.
= The samples are chosen in two ways:
e Through a lottery system
e Random number generation software.
e Systematic sampling:
= Data elements are selected at regular intervals
from the sampling data. The intervals are chosen
to ensure an adequate sample size. If you need a
sample size s from a population of size n, you

should select every gth data item for the sample.

= Example:
e Suppose you want to sample 10 students from a

list of 50 students: i—g =5

5|34

e S0, every 5th student is chosen after a
random starting point between 1 and 5.
e If the ransom number is 4, then the students
selected are: 4, 8, 12, 16,18,22,24, 28,
32,36.
e Stratified sampling:
= |t divides the population into smaller groups, or
strata, based on shared characteristics-two strata:
Male vs. Female.
= The groups of the population are based on certain
criteria, then randomly choose elements from
each in proportion to the group's size.

Population Stratified Sample of size 12

Strata #1

- — P r—
LI LI [N |'——\I ./__\.
= — = TSNS
ra
LY {=
[} i i i
— — - —

N
|
y,
N
s
I‘u'./
TN
)
-
Pl
|
L
T
\I

NN
AN AIAD

[FANEFAN

TV

(
(-

=

Strata #2 Strata #3

e Clustered sampling:
= |tis also known as area sampling.
= |t is used when the population is very large.
= |t is a probability sampling technique used when
different subsets of groups are present in a larger
population.
= Sampling is done in three steps:
e Step 1: Divide the population into naturally
non-overlapping clusters where each cluster
IS a mini representation of the entire
population.

634

e Step 2: Simple clustered sampling:
o Randomly choose k clusters to form
your sample.
o Stop if you are happy with your
sample. Otherwise, continue to Step 3.
e Step 3: Multi-stage clustered sampling:
o Further divide each cluster into new
clusters and go step 2.

:

®
®
0
0
®

State 10

Simple
State 40 Cluster
Sampling

County 1

County 2

County 1

County 2

County m-1

County m-

o
a

DO 0000
00 0000

Multi-stage
Cluster
Sampling

= Examples of streaming algorithms:
= Filtering a data stream:

= Select elements with property x from the stream
= Bloom Filter algorithm

= Counting distinct elements:

= Number of distinct elements in the last k elements of the

stream.
= Flajolet Martin (FM) Algorithm

Page 7|34

» Finding frequent elements:
= Finding which element is repeatedly coming-which user is
repeatedly visiting the site or how many times product x was
sold (Amazon)
= Datar Gionis Indyk Motwani (DGIM) Algorithm
= Estimating moments:
= Estimate avg/std. dev. of last k elements.
= Alon-Matias-Szegedy (AMS) Algorithm
= Finding data items with certain properties:
= Queries on google searches in a specific month
= Products bought at Walmart during the Christmas season
= Reservoir Sampling

834

e Distinct element counting problem
o Count how many people are visiting a web site.
= Count how many distinct IP numbers are connecting to the server
that hosts the web site.
o Count the number of distinct products sold last week.
o Naive Approach:
= Clearly, using O(N) memory space, the problem can be solved
easily in O(N log N) time by sorting, or O(N) expected time with
hashing.
= With big data: space is limited.
= We need the following:
e An unbiased estimator of the counts
e Ok to have an error in the estimation as trade-off for space.
= Flajolet Martin (FM) Algorithm
= Flajolet Martin Algorithm, also known as FM algorithm, is
an approximation algorithm.
= |t approximates the number of unique elements in a data
stream in one pass with less memory space.
= |f the stream contains n elements with m of them unique,
FM runs in O(n) times and needs O(log(m)) memory.
= Algorithm:
= Assume we have N items in the universe
= Pick a hash function h mapping the N items to at least
logz2(N) bits
= for each stream item s,
= calculate h(s)
= Convert h(s) to a binary representation
= Letr(s) be the number of trailing Os in the bit
representation of h(s)
/[for instance, assume h(s) = 12, bit representation 1100
/lr(a) is then equal to 2
e keep R = max(r(s)) over the entire stream
= Estimator: the number of distinct items seems thus far is
2R

9|34

Example:
e Given aset S={1,3,2,1,2,3,4,3,1,2,3,1} and a hash function:

» h(x)=(6x+1) mod 5

x| H(x) [Binary| r(a)
41 0 |00000| 5
3| 4 |00100| 2
5/ 1 |00001| O
2| 3 |00011| O
3| 4 |00100| 2
1| 2 |00010| 1

And the number of distinct elements = N=2R=2°=32

= Consider another has function:

h(x)=(x+7) mod 5

H(x)

Binary

r(a)

1

00001

2

00011

00010

00010

x| H(x) | Binary | r(a)
1/ 2 |00010 | 1
3| 4 |00100 | 2
2| 3 |00011| O
3| 4 |00100 | 2
2| 3 |00011| O
3| 4 |00100 | 2
So,R=max(r(a))=5
x| H(x) | Binary | r(a)
1/ 3 |00011| O
4 00001 | O
6| 3 |00011| O
9/ 1 00001 | O
2| 4 00101 | O
1/ 3 |00011| O

00100

(o] N (O ol (@) ~ P
- N N N w

00001

o NP |

10| 34

So,R=max(r(a)) =2
And the number of distinct elements = N=2R=22=4

= Why FM algorithm works:
= The hash function, h(x), maps x with equal probability to any one
of the N values
= Then h(x) is a sequence of logz(N) bits.
= The probability that h(x) ends r 0°s is 2.
= Forr=1

o 2'1:%:50% of the x’s hash to **..**()
= Forr=2
o 2'22i:25% of the x’s hash to **..**((

= |f the longest tail of 0’s is r=2, item hash ending with **100,
then
e \We have probably seen bout 4=22 distinct items so far.
= Forr
o 2—1r of all hash values have their binary representation end
inr0’s.
e if the hash function generated an integer ending in r 0’s,
intuitively, the number of unique strings is around 2"
= So, the probability that a given h(x) ends with r 0’s is 27"

=» And the probability of NOT seeing a tail of r 0’s among
m elements in the stream:

(1-2T")m

The probability of all m data items ends in fewer than r 0’s

= |etusapproximate (1 —27")™:

(1 _ Z—T)m — eln(l—Z_r)m — emln(l—z_r)

11|34

e Letusapproximate In[(1 — Z_r) using Taylor expansion:
2 3
X

X
ln[(1+x)—x—7+?+...

In[(1-2"")=-27"

So,
(1 _ 2—r)m — emln(l—Z‘r) ~ e—mZ‘r

= S0, the probability of NOT finding a tail of r 0’s is:
e If m<<2"then the probability tends to 1
(1-2")"~e ™¥" =1 since -—0
The probability of finding a tail of length r 0’s tends to 0
e If m>>2"then the probability tends to O

(1-2")"~e ™% =0 since - o
The probability of finding a tail of length r 0’s tends to 1

= In summary:
e | et m be the number of distinct elements seen so far in
the stream (Our objective is to estimate m)
e \We have shown that the probability of finding a tail of
r0’s 1s:
o 1if m>>2"
o 0i1f m<<2”

12|34

e In practice the probability of seeing a tail of r 0’s is
neither 1 or O

=> 2" will always be around m

1334

Bloom Filters: Filtering Data Stream Algorithm
= |t has been around for over 50 years.
= Check if some data item is NOT present in a very big list
= Check if a username exists without hitting performing a full database
search — especially for large databases
= How to save time, space, and disk 1/Os in checking if a data element
exists?
= Filter the non-existence of a username without a full search:
Constant TIME and SPACE.
= Applications:
= Google Chrome used to use Bloom filters to detect malicious
URLSs
= Facebook and Gmail use Bloom Filter to check if a user exists.
= What is a Bloom Filter?
= |t is aspace efficient probabilistic data structure developed by
Burton Howard Bloom back in 1970.
= |t used to test whether an item is a member of a set.
= It never generates a FALSE NEGATIVE: 0%
» |t has some FALSE POSITIVE: It confirms that an item exists
while it does not.

Actual Positive Actual Negative
Predicted False Positive: p*
Positive True Positive: 1- The item has never
“A maybe P peen inserted, yet we
answer” are returning TRUE.
Predlc_ted False Negative: 0% | True Negative:100%
Negative

* Minimize the probability p

= No deletion: Cannot delete an item from the filter

14|34

= Cannot list the inserted items in the filter.
= How does a Bloom Filter work?
= Gijven aset S of m items.
A Bloom filter is a n-bit array initialized to 0’s:

c/0/j00/0/0/0/0(0|0|O0O |O |O |O [O O |O
012345678910 11 12 13 14 15 16

It uses a collection of k hash function hy, hy, hs, ..., hk
Insertions:
e Stepl: Calculate indices using k hash functions
o Each of the k hash functions maps an item from S
to one of the n-bit array
e Step 2: Set bits to 1 at indices calculated in step 1

Query: Bloom Filter Lookup
= Suppose an item ai appears in the data stream and we want
to know if it has been seen before.

Query:
Is item ai available?
.

l

Compute the hash values for ai

YES
The item ai MAY be

present

Are all k hash indices
set to 1 in the filter

The item aiis 100%
NOT available

= Example:

15| 34

= Given aset S of string characters (usernames):
S={cat, dog, bird, lion. Frog}
= And the following two hash functions h; and hs.

Hi(word) = (ASCII(first char)+ASClI(second char)+ASClI(last)) mod 16
Ha(word) = ((ASCII(first char))?+ASClI(second char)+ASClII(last)- ASCII(first chal
mod 16

Stream Item | H1 H2
Cat 8 9
Dog 10 0
Bird 15 4
Lion 3 4
Frog 15 4
= |nsertions:

e cat:sethit8and9

oooooooo-o o]o o oo]o
0123456789 10 11 12 13 14 15 16

e dog: set bit 0 and 10

.ooooooo-o o/o]o oo

012345678910 11 12 13 14 15 16

e bird: set bit 4 and 15

.ooo.ooo-o 010 o.o

01234567 89 10 11 12 13 14 15 16

e lion: set bit 3 and 4

Page 16|34

5 o o o o o SR o [0 [0 [0 o

012345678910 11 12 13 14 15 16

e frog: set bit4 and 15
0 |0 [0 [0 [@Ho0

Ho oo 0 e

012345678910 11 12 13 14 15 16

e Bloom Filter Final State:

5070 5 0o O FEREE o [0 [0 [0 [E0

012345678910 11 12 13 14 15 16

= Check if an item in available:
e Use the following new items (usernames)

Stream Item | H1 | H2

ant 3 0
tiger 15| 0
monkey 5 6
snake 6 9

e Query: ant

o Hash values are 3 and 0
o All the bits in the filter are set to 1 =» False
Positive

o Query: Tiger
o Hash values are 0 and 15
o All the bits in the filter are set to 0 = True
Negative

Page 17|34

e Query: Monkey
o Hash values are 5 and 6
o All the bits in the filter are set to 0 = True
Negative

e Query: Snake
o Hash values are 6 and 9
o NOT all the bits in the filter are set to 1 =» True
Negative

Bloom Filter — Analysis
= Given a Bloom Filter with n bits and uses k hash functions that
are uniform and independent
= What is the probability that a bit in the filter is 1, assuming one
hash function?

o1
Probability is -

= What is the probability that a bit in the filter is 0, assuming one
hash function?

Probability is 1 — -

= What is the probability that a bit in the filter is 0, after m items
have been inserted using all k hash functions?

km

Po =(1_%)

= What is the probability that a bit in the filter is 1, after m items
have been inserted using all k hash functions?

p1=1-po
18|34

= The probability of FALSE POSITIVE then is:

P1k =1- Po)k

Let us call the FALSE POSITIVE probability, FP

km

1
FP=pf=(1-(1-2))

= Let us rewrite the probability that a bit in the filter is 0 using e

km km
(1 _%> _ i)]

= Letusapproximate In[(1 — %) using Taylor expansion:

mO+0=x—5 1% 4
n[= > 3 T
If x is very small, them the terms after x are much smaller

1 1
Then, In[(1 — ;) o

And,

19|34

= | et us approximate the FALSE POSITIVE probability, FP

FP=p*=(1-(1-7) Y=~(1-eTn)
~ (1 - o)

k

Note that %is the number of items per slot (m is the

number of items and n is the number of bits in the
filter)

= How so we choose the number of hash function k?
= |[fKis large, then
e The filter will clog with 1°s
= |f Kistoo small then,
e The error does not decrease.
= |fyou plot FP, the function shows a minimum
= Compute the best k for a given m and n:
o Take the derivative of FA (it is tricky)

d mi\ K

Lne Si-c?)

=> Take the log of FA: yield the same minimum

20|34

d d _mk\ K
—In(FA) = —1In (1 —e n)

dk dk
inEa) = L (1 ‘m—k)
—_ e _ n
g nFA) = Zpkin(1 —e

o Derivative Is zero when

n
k=In2.—
m

e Therefore, the best value for k is best choice of k:

n
k=In2.—
m

If we pick ideal (# hashes) for fixed m and n, what
fraction of the filter do we expect to be set bits?

What is the optimal value for py?

_mk
e n :po

mk
= Ine » =Inp,
9 —mTkzlnﬁo
n ~
> k =——Inp,

So, the best choice of k

k=1 Zn— nl D
=In2.—= ——Inp,
= —In2 = Inp,

21|34

= Inpy=-In2=1In2"1 =ln%

~ 1 o
2> Ppo = > The filter is 50% set to 1.

22|34

Reservoir Sampling

Reservoir sampling is a fixed-size randomized algorithm that chooses
a data item without replacement, of s items from a population of
unknown size n in a single pass over the items.

It maintains a set s of random samples seen so far in the stream.

New item has a certain probability % of replacing an old element in the

reservoir.
Apache Spark uses reservoir sampling during the generation of values
for range partitioning.
Problem Definition:
= Given a stream of n items, we want to sample s random items,
without replacement and by using uniform probabilities.
= nis unknown and too large for all n items to fit into main
memory.
= Data items are revealed to the algorithm over time, and the
algorithm cannot look back at previous items.
Algorithm:
= Store all the first s items of the stream to a set S
= Suppose we have seen n-1 items, and now the n' item
arrives (n>s)

e With probability % keep the n'" item, else discard it

e If we picked the n™ item, then it replaces one of the s
items in the sample S, picked uniformly at random
Claim:
= The algorithm maintains a sample S with the desired property:
After n items, the sample contains each item seen so far with

probability E
= Proof By Induction:
e \We assume that after n items, the sample contains each item
see so far with probability E

e We need to show that after seeing the item n+1 the
sample maintains the property that

23134

o Sample contains each element seen so far
with probability ﬁ

= Base case:
e After we see n=s items, the sample has the desired

property
o Each one of the n=s items is included in the

sample with probability Z =1
= [nductive hypothesis:
e After n items, the sample S contains each item seen so
far with probability E

e Letus now process the new item n+1
= |nductive Step:
e For items already in S, the probability that the
algorithm keeps it in S is:

(1_ni1)+(ni1)<sgl)=ni1

1 — —— =>Estimate n+1 discarded
n+1

i =» Estimate n+1 NOT discarded

% =>»Old elements in the sample NOT picked

e S0, at time n, items in S were there with probability E

(-7 + D (5

- (1559 + (50

24|34

s+s 1
n+1 n+1 n+1

n

T n+1
e Time n =>» n+1, item stayed in S with probability
n

n+1

25|34

e Counting Bits Using DGIM Algorithm
= For every product x we keep 0/1 stream of whether that product was
sold in a given transaction
e How many times have we sold x in the last k sales?
= Given is a binary stream with a sliding window of length N

e How many 1’s are in the last N bits?

< >

Past Future

= Datar-Gionis-Indyk-Motwani Algorithm (DGIM)
e The algorithm only stores 0(log?(N))
e The approximate solution is never off by more than 50%
e The error factor can be further reduced by more complicated
algorithm and more stored bits.
e Allow to estimate the number of 1’s in the window with an error
of no more than 50%
e Each bit arrives has a timestamp
e The window is divided into buckets of 1°s and 0’s
e Rules for forming the buckets:
= All buckets should be on power of 2: 2°, 2%, 22,...
= The right side of the bucket should always start with 1 on
its right end.
= Every bucket should have at least one 1, otherwise no
bucket can be formed.
= The buckets cannot be decreased in size as we read new
elements.

26|34

at lease 1 of size 16
partially bevond the
window.

l

There are one or two buckets of the same size up to some
maximum size

Buckets are sorted by size. Earlier buckets are not smaller
than later buckets

Buckets start disappearing when their end time is >N time
units in the past.

1 ofsizel

2 of size § 2 of size 4 J 2 of size 1

1000101001010001/0

101011010101 1(0)11 11011 1011)0{10111[0)1 1011 1||1

<

>
N

When a new bit comes in, drop the last bit from the old
bucket if its time-end is prior to N time units before the
current time. Two cases:
e If the current bit is 0: No other changes are needed.
e |f the current bitis 1:
o Create a new bucket of size 1 for just this bit
o If there are now three buckets of size 1:
= Combine the oldest buckets of size 1 into a
new bucket of size 2.
o If there are three buckets of size 2:
= Combine the oldest buckets of size 2 into a
bucket of size 4
o Etc.

27|34

2 of size 2

1 of size 8§ 2 of size 4 1 of size 1

1110111011010111011011 0 |4 1nmnlolo

<«
N
2 of size 2
1 of size 8 2 of size 4 Lofsize 1
| 2 of sizel

11101110110101110110 11 0 1“.0.0.
>

<

3 of size 2

1 of size 8 2 of size 4 Lofsize 1

111011101101011101101 1 04 1“...0.
»

€

1 of size 8 3 of size 4 Lofsizel

| 1 of size 2

1110111011010111011011 0 1 1101...0.
«< >

N

2 of size 8

1 of size 4 Lofsize 1

1 of size 2
v v |
111011101101011101101 1 01 1101_0.

< - >
N

Page 28|34

e Why the error is 50%?
= Suppose the last bucket has size 2".
= |f we assume that half of the total number of bits of this
bucket are still in the window, we are making an error of at
most 21
= |n the sliding window, we have at least one bucket of each of
the sizes less than 2", then the total number of bits is:

204+ 214 224 421 =2rq

21‘—1 1 21"
2r—1 22r-1

= The error is % = 50%
= How to reduce the error?
= |nstead of maintaining 1 or 2 of each bucket, we allow either
r-1 or r buckets where r>2.
= Except of the largest bucket, we can have any number of r-
1or r buckets.
= |n the sliding window, we can have up r buckets of each of
the sizes less than 2", then the total number of bits is:

r2% r2t+ r2%+.. . +r2"* = r(2'-1)

.o2r-1 1 2 1.
= - — ~ —
The error is D mr i m

_ 1
= So, the error is at most 0(;)

= By picking r approximately, we can tradeoff between
number of bits we store and the error.

29|34

e Finding frequent elements
o Applications:
= High-speed network switch: tokens are packets with source,
= destination IP addresses and message contents.
= Each token is an edge in graph (graph streams)
= Each token in a point in some feature space
= Each token is a row/column of a matrix
o Problem Description:
= The input consists of m objects/items/tokens S=ey, e;,..., s that are
seen one by one by the algorithm where e; is an element of a
universal set U of size n=|U|
= et fi denote the frequency of an item i or number of times i is seen
in the stream S
Consider the frequency vector:

f=(f1, f2, ..., fn) where n = |U|

For k>=0 the k’th frequency moment

n
Fk = z fik
i=1

= Special cases:
o k=0:

- Fo is simply the number of distinct elements in stream
(Flajolet-Martin(FM) algorithm)

n
Fl == Z fil
i=1

- F1is the length of stream which is easy

o k=1:

30|34

o k=2:

- Fzis surprise number is a measure of how uneven the
distribution is.
- Example:

Consider the following set U=(1,2,3,4,5,6,7,8,9,..1000}
And a stream S of 10 values

Case 1: S={200,1,1,1,1,1,1,1,1,1}
F,=200% + 9x12 = 40009

Case 2: 5={10,10,10,10,10,10, 8, 8, 8, 8}
Fo= 6x10%2+4x82=356

o k=infinity
F- is the maximum frequency (heavy hitters prob)

o Direct Method
= [t requires memory of the order QQ(N) to store m; for all distinct
elements.
= But we have memory limitations, and requires an algorithm to
compute in much lower memory

o Alon-Matias-Szegedy (AMS) Algorithm (Works on all moments)
o AMS works for all moments
o It gives an unbiased estimate.
o Let us consider the 2nd moment for now.
o We pick and keep track of many variables X:
o For each variable X, we form a key-value pair:

31|34

e X.key: The data element i
e X.val: The count of item i

= Note this requires a count in main memory, so the number of Xs is
limited
= The objective is to compute:

S = Zlmlz

where mi is the number of times value 1| occurs in the
stream and i is the number of distinct elements in the
stream

= Expectation Analysis
e The second momentis § = ¥; m?
e Our estimate is
e S=f(X)=n(2c-1)

e Let us computer the expectation of our estimate:

e Ct is the number of times item at time t appears from time t
onwards (C1=Mma, C2=Ma-1, C3=Mp)

If ma is the total count of a in the stream

Count Stream
_ The total
cy=m,-1 number of times
cj=m, l a is in the stream
Comt > 1 2 3 m, /
100000 N)
Stream :{> a a b b b a a

32|34

mi is the total count of item i in the stream, assuming a
stream of length n

n

E[f(X)] = %Z n(2c, — 1)

t=1

Where
Time t when last itemiisseenc;, = 1
Time t when second last item i is seen ¢; = 2
Time t when the first item 1 is seen ¢; = m;

e Sum the times by the value seen (By distinct item)

E[f(X)] = ZZn(1+3+5+ +2m; — 1)

Z Z(Zl—l) ——Z n(iZi—il)
i=1 i=1

m;(m; +1
i i i

E[f(X)] = Yim* =S
This is the second moment

o High order moments

= To estimate the kth moment, we use the same algorithm but change
the estimate:

» For k=2, we used n(2.c-1)
= For k=3, we use: n(3c?+-3c+1) where c=X.val
= Explanation:

33|34

For k=2:

o We used the following estimate function:

o S=f(X) =n(2c-1)
And we have shown that E[f(X)] = Y;;m;? =S

o Note that the estimate function:
e S=f(X) =n(2c-1) = n(c-(c-1)?)

o Fork=23:
e S=f(X) = n(c*-(c-1)*)=n(3c>-3c+1)

o Forany k:

o S=f(X) = n(c*-(c-1)¥)

o How do we handle never ending stream?
= The estimate function we used assume a stream of n items:

S=f(X) = n(2c-1)

= Assume we can only store k counts. We must ignore some X’s out as
time goes on.
= Objective:

N : _ I
Each starting time t is selected with probability -

e Solution:

Use fixed-size sampling — Reservoir Sampling
Choose the first k times for k variables

: L .ok
When the n™ element arrives (n>k), choose it with probablllty;

If you choose it, throw one of the previous stored variable X out
with equal probability.

3434

