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• Objectives 

o Understand the distribution of a data stream 

o Data is continuous and unbound 

o Hard to process with algorithms for batch data 

o Explore stream processing to analyze and process big data in real 

time to gain current insights to make appropriate decisions. 

o The system cannot store the entire stream 

o How to process the unbound data stream using limited resources?  

o Queries on streams can be very useful: Monitoring, alerts, automated 

triggering of actions 

 

 

• What is a data stream? 

▪ Streaming data is used to describe unbounded, time-ordered 

large sequence data generated continuously at high velocity. 

▪ “A data stream is a real-time, continuous, ordered 

(implicitly by arrival time or explicitly by timestamp) 

sequence of items. It is impossible to control the order in 

which items arrive, nor is it feasible to locally store a stream 

in its entirety.” - Golab & Oszu 

 

 

 

 

 

 

 

 

 

▪ Data streams (also called tuples) are:  

• infinite – one does not know the size of the data  

• non-stationary – the distributions of the data can 

change over time (seasonally, daily, hourly) 

 

Time flow 
Sliding window 
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▪ Applications 

▪ Counting distinct elements: Number of distinct elements in 

the last k elements of the stream 

▪ Sample data from a stream 

▪ Filtering items: Number of distinct elements in the last k 

elements of the stream 

▪ Estimating moments: Estimate avg./std. dev. of last k 

elements 

▪ Queries over sliding windows: Number of items of type x in 

the last k elements of the stream 

▪ Mining query streams: Google wants to know what queries 

are most frequent than yesterday  

▪ Window size = one day and count the frequency of queries 

▪ Mining click streams: Yahoo wants to know which of its 

pages are getting an unusual number of hits in the past hour.  

▪ Mining social networks: Looking for trending topics on 

twitter, Facebook, etc. 
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▪ Monitor packets at network switch: detect denial of service 

attaches. 

 

• Streaming Algorithms 

▪ A data stream is a sequence of data 

S = s1, s2, . . . , si, . . . , 

where each item si is an item in the universe U, where |U| = N.  

▪ A streaming algorithm A takes S as input and needs to compute some 

function f of S.  

▪ Processing constraints: 

▪ limited memory  

▪ limited processing time per item 

▪ Streaming data can only be read once. 

▪ Streaming algorithms produces approximate answer due to 

processing constraints. 

▪ Streaming algorithms efficiency measurements: 

▪ How much data you can store at a time 

▪ Processing time for an input data stream 

▪ Number of passes to process a data stream 

▪ Streaming algorithm approaches: 

▪ There are several approaches to process streaming data such 

sketching, randomized algorithms, etc. 

▪ We are going to look at two approaches: 

▪ Random sampling 

▪ Sliding windows 

▪ Window-based streaming: 

▪ It is a technique for reducing the complexity of algorithms. 

▪ Make decisions based only on recent data of sliding window 

size w 

▪ An element arriving at time t expires at time t + w 

▪ Data elements are grouped within a window that slides 

across the data stream according to a specified interval. 

 

A B C D E F G H I 
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A B C D E F G H I 

 

▪ Random sampling  

▪ It consists of selecting a group from a population to 

represent the whole population. 

▪ Sample without knowing the total length in advance 

▪ Sampling techniques: 

• Probabilistic random sampling: 

▪ It is a technique in which each member in a 

population has an equal chance of being selected 

as a sample(unbiased) 

• Non-probabilistic non-random sampling  

▪ It uses arbitrary sample selection instead of 

sampling based on a randomized selection 

▪  Probabilistic sampling techniques: 

• Simple random sampling: 

▪ It is a random and automated method to select a 

sample.  

▪ This sampling method assigns numbers to the 

individuals and then randomly chooses numbers.  

▪ The samples are chosen in two ways: 

• Through a lottery system  

• Random number generation software. 

• Systematic sampling: 

▪ Data elements are selected at regular intervals 

from the sampling data. The intervals are chosen 

to ensure an adequate sample size. If you need a 

sample size s from a population of size n, you 

should select every 
𝑛

𝑠
th data item for the sample. 

▪ Example:  

• Suppose you want to sample 10 students from a 

list of 50 students: 
50

10
 =5  
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• So, every 5th student is chosen after a 

random starting point between 1 and 5. 

• If the ransom number is 4, then the students 

selected are: 4, 8, 12, 16,18,22,24, 28, 

32,36. 

• Stratified sampling: 

▪ It divides the population into smaller groups, or 

strata, based on shared characteristics-two strata: 

Male vs. Female. 

▪ The groups of the population are based on certain 

criteria, then randomly choose elements from 

each in proportion to the group's size. 

 

 
 

• Clustered sampling: 

▪ It is also known as area sampling.  

▪ It is used when the population is very large.  

▪ It is a probability sampling technique used when 

different subsets of groups are present in a larger 

population. 

▪ Sampling is done in three steps:  

• Step 1: Divide the population into naturally 

non-overlapping clusters where each cluster 

is a mini representation of the entire 

population. 
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• Step 2: Simple clustered sampling: 

o Randomly choose k clusters to form 

your sample.   

o Stop if you are happy with your 

sample. Otherwise, continue to Step 3.  

• Step 3: Multi-stage clustered sampling: 

o Further divide each cluster into new 

clusters and go step 2. 

 
▪ Examples of streaming algorithms: 

▪ Filtering a data stream: 

▪ Select elements with property x from the stream 

▪ Bloom Filter algorithm 

▪ Counting distinct elements: 

▪ Number of distinct elements in the last k elements of the 

stream. 

▪ Flajolet Martin (FM) Algorithm 
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▪ Finding frequent elements: 

▪ Finding which element is repeatedly coming-which user is 

repeatedly visiting the site or how many times product x was 

sold (Amazon) 

▪ Datar Gionis Indyk Motwani (DGIM) Algorithm  

▪ Estimating moments: 

▪ Estimate avg/std. dev. of last k elements. 

▪ Alon-Matias-Szegedy (AMS) Algorithm 

▪ Finding data items with certain properties: 

▪ Queries on google searches in a specific month 

▪ Products bought at Walmart during the Christmas season 

▪ Reservoir Sampling 
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• Distinct element counting problem 

o Count how many people are visiting a web site. 

▪ Count how many distinct IP numbers are connecting to the server 

that hosts the web site. 

o Count the number of distinct products sold last week. 

o Naïve Approach: 

▪ Clearly, using O(N) memory space, the problem can be solved 

easily in O(N log N) time by sorting, or O(N) expected time with 

hashing.  

▪ With big data: space is limited.  

▪ We need the following: 

• An unbiased estimator of the counts  

• Ok to have an error in the estimation as trade-off for space. 

▪ Flajolet Martin (FM) Algorithm 

▪ Flajolet Martin Algorithm, also known as FM algorithm, is 

an approximation algorithm. 

▪ It approximates the number of unique elements in a data 

stream in one pass with less memory space. 

▪  If the stream contains n elements with m of them unique, 

FM runs in O(n) times and needs O(log(m)) memory. 

▪ Algorithm:  

▪ Assume we have N items in the universe 

▪ Pick a hash function h mapping the N items to at least 

log2(N) bits 

▪ for each stream item s,  

▪ calculate h(s)  

▪ Convert h(s) to a binary representation 

▪ Let r(s) be the number of trailing 0s in the bit 

representation of h(s) 

//for instance, assume h(s) = 12, bit representation 1100 

//r(a) is then equal to 2 

• keep R = max(r(s)) over the entire stream 

▪ Estimator: the number of distinct items seems thus far is 

2R 
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▪ Example:  

• Given a set S={1,3,2,1,2,3,4,3,1,2,3,1} and a hash function: 

▪ h(x)=(6x+1) mod 5 

  

x H(x) Binary r(a)    x H(x) Binary r(a) 

1 2 00010 1    4 0 00000 5 

3 4 00100 2    3 4 00100 2 

2 3 00011 0    5 1 00001 0 

3 4 00100 2    2 3 00011 0 

2 3 00011 0    3 4 00100 2 

3 4 00100 2    1 2 00010 1 

 

 

So, R = max( r(a) ) = 5 

And the number of distinct elements = N=2R=25=32 

 

▪ Consider another has function: h(x)=( x+7) mod 5 

 

x H(x) Binary r(a)    x H(x) Binary r(a) 

1 3 00011 0    4 1 00001 2 

4 1 00001 0    6 3 00011 0 

6 3 00011 0    5 2 00010 1 

9 1 00001 0    5 2 00010 1 

2 4 00101 0    2 4 00100 2 

1 3 00011 0    9 1 00001 0 
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So, R = max( r(a) ) = 2 

And the number of distinct elements = N=2R=22=4 

 

▪ Why FM algorithm works: 

▪ The hash function, h(x), maps x with equal probability to any one 

of the N values 

▪ Then h(x) is a sequence of log2(N) bits.  

▪ The probability that h(x) ends r 0’s is 2-r. 

▪ For r=1 

• 2-1=
1

2
=50%  of the x’s hash to **..**0   

▪ For r=2 

• 2-2=
1

4
=25%  of the x’s hash to **..**00   

▪ If the longest tail of 0’s is r=2, item hash ending with **100, 

then 

• We have probably seen bout 4=22 distinct items so far.   

▪ For r 

• 
𝟏

𝟐𝒓 of all hash values have their binary representation end 

in r 0’s. 

• if the hash function generated an integer ending in r 0’s, 

intuitively, the number of unique strings is around 2r 

▪ So, the probability that a given h(x) ends with r 0’s is 2-r 

 

➔ And the probability of NOT seeing a tail of r 0’s among 

m elements in the stream: 

(𝟏 − 𝟐−𝒓)𝒎  

   The probability of all m data items ends in fewer than r 0’s 

 

▪ Let us approximate (𝟏 − 𝟐−𝒓)𝒎: 

 

(𝟏 − 𝟐−𝒓)𝒎 = 𝒆𝐥𝐧(𝟏−𝟐−𝒓)𝒎
= 𝒆𝐦𝐥𝐧(𝟏−𝟐−𝒓) 
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• Let us approximate  ln[(1 − 𝟐−𝒓)    using Taylor expansion: 

ln[(1 + 𝒙) = 𝒙 −
𝒙𝟐

𝟐
+

𝒙𝟑

𝟑
+ … 

 

ln[(1 − 𝟐−𝒓
) ≈ −𝟐−𝒓  

 

    So,  

(𝟏 − 𝟐−𝒓)𝒎 = 𝒆𝐦𝐈𝐧(𝟏−𝟐−𝒓) ≈ 𝒆− 𝐦 𝟐−𝒓
 

 

▪ So, the probability of NOT finding a tail of r 0’s is: 

 

• If m<<𝟐𝒓then the probability tends to 1 

 

 (𝟏 − 𝟐−𝒓)𝒎 ≈ 𝒆− 𝐦 𝟐−𝒓
= 𝟏  since   

𝒎

𝟐𝒓 → 𝟎 

 
The probability of finding a tail of length r 0’s tends  to 0 

 
• If m>>𝟐𝒓then the probability tends to 0 

 

 (𝟏 − 𝟐−𝒓)𝒎 ≈ 𝒆− 𝐦 𝟐−𝒓
= 𝟎  since   

𝒎

𝟐𝒓 → ∞ 

 

The probability of finding a tail of length r 0’s tends  to 1 

 

▪ In summary: 

• Let m be the number of distinct elements seen so far in 

the stream (Our objective is to estimate m)  

• We have shown that the probability of finding a tail of 

r 0’s is: 

o 1 if m>>𝟐𝒓 

o 0 if m<<𝟐𝒓 
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• In practice the probability of seeing a tail of r 0’s is 

neither 1 or 0 

 

➔ 𝟐𝒓 will always be around m 
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• Bloom Filters: Filtering Data Stream Algorithm 

▪ It has been around for over 50 years. 

▪ Check if some data item is NOT present in a very big list 

▪ Check if a username exists without hitting performing a full database 

search – especially for large databases 

▪ How to save time, space, and disk I/Os in checking if a data element 

exists?  

▪ Filter the non-existence of a username without a full search: 

Constant TIME and SPACE. 

▪ Applications: 

▪ Google Chrome used to use Bloom filters to detect malicious 

URLs 

▪ Facebook and Gmail use Bloom Filter to check if a user exists. 

▪ What is a Bloom Filter? 

▪ It is a space efficient probabilistic data structure developed by 

Burton Howard Bloom back in 1970. 

▪ It used to test whether an item is a member of a set. 

▪ It never generates a FALSE NEGATIVE: 0% 

▪ It has some FALSE POSITIVE: It confirms that an item exists 

while it does not.  

 

 Actual Positive Actual Negative 

Predicted 

Positive 

“A maybe 

answer” 

True Positive: 1-p 

False Positive: p* 

The item has never 

been inserted, yet we 

are returning TRUE. 

Predicted 

Negative 
False Negative: 0% True Negative:100% 

* Minimize the probability p 

 

 

  

▪ No deletion: Cannot delete an item from the filter 
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▪ Cannot list the inserted items in the filter. 

▪ How does a Bloom Filter work? 

▪ Given a set S of m items. 

▪ A Bloom filter is a n-bit array initialized to 0’s: 

 

 

 

 

▪ It uses a collection of k hash function h1, h2, h3, …, hk 

▪ Insertions:  

• Step1: Calculate indices using k hash functions 

o Each of the k hash functions maps an item from S 

to one of the n-bit array  

• Step 2: Set bits to 1 at indices calculated in step 1 

 

 

▪ Query: Bloom Filter Lookup  

▪ Suppose an item ai appears in the data stream and we want 

to know if it has been seen before. 

 

 
▪ Example: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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▪ Given a set S of string characters (usernames): 

S={cat, dog, bird, lion. Frog} 

▪ And the following two hash functions h1 and h2. 

 

H1(word) = (ASCII(first char)+ASCII(second char)+ASCII(last) ) mod 16 

H2(word) = ((ASCII(first char))2+ASCII(second char)+ASCII(last)- ASCII(first char)) 

mod 16 

 

Stream Item H1 H2 

Cat 8 9 

Dog 10 0 

Bird 15 4 

Lion 3 4 

Frog 15 4 

 

 

▪ Insertions:  

• cat: set bit 8 and 9 

 

• dog: set bit 0 and 10 

 

 

 

 

• bird: set bit 4 and 15 

 

 

 

 

• lion: set bit 3 and 4 

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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• frog: set bit 4 and 15 

 

 

 

 

• Bloom Filter Final State:  

 

 

 

 

 

▪ Check if an item in available: 

• Use the following new items (usernames) 

 

Stream Item H1 H2 

ant 3 0 

tiger 15 0 

monkey 5 6 

snake 6 9 

 

• Query: ant 

o Hash values are 3 and 0  

o All the bits in the filter are set to 1 ➔ False 

Positive 

 

• Query: Tiger 

o Hash values are 0 and 15  

o All the bits in the filter are set to 0 ➔ True 

Negative 

 

1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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• Query: Monkey 

o Hash values are 5 and 6  

o All the bits in the filter are set to 0 ➔ True 

Negative 

 

• Query: Snake 

o Hash values are 6 and 9  

o NOT all the bits in the filter are set to 1 ➔ True 

Negative 

 

 

 

▪ Bloom Filter – Analysis 

▪ Given a Bloom Filter with n bits and uses k hash functions that 

are uniform and independent 

▪ What is the probability that a bit in the filter is 1, assuming one 

hash function?  

 

Probability is 
𝟏

𝒏
 

▪ What is the probability that a bit in the filter is 0, assuming one 

hash function?  

    

Probability is 1 −
𝟏

𝒏
 

 

▪ What is the probability that a bit in the filter is 0, after m items 

have been inserted using all k hash functions?  

 

 𝑝0 = (1 −
𝟏

𝒏
)

𝒌𝒎

    

 

▪ What is the probability that a bit in the filter is 1, after m items 

have been inserted using all k hash functions?  

 

𝑝1 = 1 − 𝑝0 
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▪ The probability of FALSE POSITIVE then is: 

 

𝑝1
𝑘 = (1 − 𝑝0)𝑘 

 

Let us call the FALSE POSITIVE probability, FP 

𝐹𝑃 = 𝑝1
𝑘 = (1 − (1 −

𝟏

𝒏
)

𝒌𝒎

)𝑘 

 

 

 

 

▪ Let us rewrite the probability that a bit in the filter is 0 using e  

(1 −
𝟏

𝒏
)

𝒌𝒎

= 𝑒ln[(1−
𝟏
𝒏)

𝒌𝒎

]
 

 

(1 −
𝟏

𝒏
)

𝒌𝒎

= 𝑒𝑘𝑚 ln[(1−
𝟏
𝒏)

 

 

 

▪ Let us approximate  ln[(1 −
𝟏

𝒏
)    using Taylor expansion: 

 

 

ln[(1 + 𝒙) = 𝒙 −
𝒙𝟐

𝟐
+

𝒙𝟑

𝟑
+ … 

 

If x is very small, them the terms after x are much smaller  

  

Then, ln[(1 −
𝟏

𝒏
) ≈  −

1

𝑛
 

 

And,  

 



P a g e  20 | 34 

 

 

𝑒𝑘𝑚 ln[(1−
𝟏
𝒏) ≈  𝑒−

𝑚𝑘
𝑛  

 

▪ So, the probability that a bit in the filter is 0:  

 

𝑝0 = (1 −
𝟏

𝒏
)

𝒌𝒎

≈ 𝑒−
𝑚𝑘

𝑛 = 𝑝̃0 

 

  
▪ Let us approximate the FALSE POSITIVE probability, FP 

 

𝑭𝑷 = 𝒑𝟏
𝒌 = (𝟏 − (𝟏 −

𝟏

𝒏
)

𝒌𝒎

)𝒌 ≈ (𝟏 − 𝒆−
𝒎𝒌
𝒏 )

𝒌

≈ (𝟏 − 𝒑̃𝟎)𝒌 

 

Note that 
𝒎

𝒏
is the number of items per slot (m is the 

number of items and n is the number of bits in the 

filter) 

 

▪ How so we choose the number of hash function k?  

▪ If K is large, then 

• The filter will clog with 1’s 

▪ If K is too small then, 

• The error does not decrease.  

▪ If you plot FP, the function shows a minimum 

▪ Compute the best k for a given m and n: 

• Take the derivative of FA (it is tricky) 

 

𝑑

𝑑𝑘
(𝐹𝐴) =  

𝑑

𝑑𝑘
(𝟏 − 𝒆−

𝒎𝒌
𝒏 )

𝒌

 

 

   ➔ Take the log of FA: yield the same minimum 
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𝑑

𝑑𝑘
ln(𝐹𝐴) =  

𝑑

𝑑𝑘
ln (𝟏 − 𝒆−

𝒎𝒌
𝒏 )

𝒌

 

𝑑

𝑑𝑘
ln(𝐹𝐴) =  

𝑑

𝑑𝑘
𝑘In (𝟏 − 𝒆−

𝒎𝒌
𝒏 ) 

 

 

o Derivative is zero when  

𝒌 = 𝐥𝐧 𝟐 .
𝒏

𝒎
 

 

• Therefore, the best value for k is best choice of k:  

𝒌 = 𝐥𝐧 𝟐 .
𝒏

𝒎
 

If we pick ideal (# hashes) for fixed m and n, what 

fraction of the filter do we expect to be set bits? 

 

What is the optimal value for 𝒑̃𝟎? 

 

𝒆−
𝒎𝒌
𝒏 = 𝒑̃𝟎 

 

   ➔  𝐥𝐧 𝒆−
𝒎𝒌

𝒏 = 𝐥𝐧 𝒑̃𝟎 

 

   ➔  −
𝒎𝒌

𝒏
= 𝐥𝐧 𝒑̃𝟎 

 

   ➔  𝒌 = −
𝒏

𝒎
𝐥𝐧 𝒑̃𝟎 

 

So, the best choice of k  

 

𝒌 = 𝐥𝐧 𝟐 .
𝒏

𝒎
=  −

𝒏

𝒎
𝐥𝐧 𝒑̃𝟎 

 

   ➔  − 𝐥𝐧 𝟐 =  𝐥𝐧 𝒑̃𝟎 
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   ➔  𝐥𝐧 𝒑̃𝟎 = − 𝐥𝐧 𝟐 = 𝐥𝐧 𝟐−𝟏 = 𝐥𝐧
𝟏

𝟐
 

 

➔  𝒑̃𝟎 =  
𝟏

𝟐
     

 

  

    

 

 

  

The filter is 50% set to 1.  
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• Reservoir Sampling 

▪ Reservoir sampling is a fixed-size randomized algorithm that chooses 

a data item without replacement, of s items from a population of 

unknown size n in a single pass over the items.  

▪ It maintains a set s of random samples seen so far in the stream. 

▪ New item has a certain probability 
𝐬

𝐧
 of replacing an old element in the 

reservoir. 

▪ Apache Spark uses reservoir sampling during the generation of values 

for range partitioning. 

▪ Problem Definition: 

▪ Given a stream of n items, we want to sample s random items, 

without replacement and by using uniform probabilities. 

▪ n is unknown and too large for all n items to fit into main 

memory.  

▪ Data items are revealed to the algorithm over time, and the 

algorithm cannot look back at previous items.  

▪ Algorithm: 

▪ Store all the first s items of the stream to a set S 

▪ Suppose we have seen n-1 items, and now the nth item 

arrives (n>s) 

• With probability 
𝐬

𝐧
, keep the nth item, else discard it 

• If we picked the nth item, then it replaces one of the s 

items in the sample S, picked uniformly at random 

▪ Claim: 

▪ The algorithm maintains a sample S with the desired property: 

After n items, the sample contains each item seen so far with 

probability  
𝐬

𝐧
. 

▪ Proof By Induction: 

• We assume that after n items, the sample contains each item 

see so far with probability  
𝐬

𝐧
 

• We need to show that after seeing the item n+1 the 

sample maintains the property that 
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o Sample contains each element seen so far 

with probability  
𝐬

𝐧+𝟏
 

▪ Base case: 
• After we see n=s items, the sample has the desired 

property 

o Each one of the n=s items is included in the 

sample with probability  
𝐬

𝐬
= 𝟏 

▪ Inductive hypothesis: 
• After n items, the sample S contains each item seen so 

far with probability  
𝐬

𝐧
  

• Let us now process the new item n+1 

▪ Inductive Step: 

• For items already in S, the probability that the 

algorithm keeps it in S is: 

 

(1 −
s

n + 1
) + (

s

n + 1
) (

s − 1

s
) =

n

n + 1
 

 

1 −
s

n+1
 ➔Estimate n+1 discarded 

 
s

n+1
 ➔Estimate n+1 NOT discarded 

 
s−1

s
 ➔Old elements in the sample NOT picked 

• So, at time n, items in S were there with probability  
𝐬

𝐧
 

 

(1 −
𝑠

𝑛 + 1
) + (

𝑠

𝑛 + 1
) (

𝑠 − 1

𝑠
) 

= (1 −
𝑠

𝑛 + 1
) + (

𝑠 − 1

𝑛 + 1
) 
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= 1 −
𝑠

𝑛 + 1
+

𝑠

𝑛 + 1
−

1

𝑛 + 1
 

 

    =
𝑛

𝑛+1
 

 

• Time n ➔ n+1, item stayed in S with probability  
𝐧

𝐧+𝟏
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• Counting Bits Using DGIM Algorithm 

▪ For every product x we keep 0/1 stream of whether that product was 

sold in a given transaction 

• How many times have we sold x in the last k sales? 

▪ Given is a binary stream with a sliding window of length N   

• How many 1’s are in the last N bits?   

 

 

▪ Datar-Gionis-Indyk-Motwani Algorithm (DGIM) 

• The algorithm only stores 𝐎(𝐥𝐨𝐠𝟐(𝐍)) 

• The approximate solution is never off by more than 50% 

• The error factor can be further reduced by more complicated 

algorithm and more stored bits.  

• Allow to estimate the number of 1’s in the window with an error 

of no more than 50% 

• Each bit arrives has a timestamp  

• The window is divided into buckets of 1’s and 0’s 

• Rules for forming the buckets: 

▪ All buckets should be on power of 2: 20, 21, 22,… 

▪ The right side of the bucket should always start with 1 on 

its right end. 

▪ Every bucket should have at least one 1, otherwise no 

bucket can be formed. 

▪ The buckets cannot be decreased in size as we read new 

elements. 
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▪ There are one or two buckets of the same size up to some 

maximum size 

▪ Buckets are sorted by size. Earlier buckets are not smaller 

than later buckets 

▪ Buckets start disappearing when their end time is >N time 

units in the past. 

 

 
▪ When a new bit comes in, drop the last bit from the old 

bucket if its time-end is prior to N time units before the 

current time. Two cases: 

• If the current bit is 0: No other changes are needed. 

• If the current bit is 1:  

o Create a new bucket of size 1 for just this bit 

o If there are now three buckets of size 1: 

▪ Combine the oldest buckets of size 1 into a 

new bucket of size 2. 

o If there are three buckets of size 2: 

▪ Combine the oldest buckets of size 2 into a 

bucket of size 4 

o Etc.  
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• Why the error is 50%?  

▪ Suppose the last bucket has size 2r.  

▪ If we assume that half of the total number of bits of this 

bucket are still in the window, we are making an error of at 

most 2r-1  

▪ In the sliding window, we have at least one bucket of each of 

the sizes less than 2r, then the total number of bits is:  

20+ 21+ 22+…+2r-1 = 2r-1 

 The error is 
𝟐𝒓−𝟏

𝟐𝒓−𝟏
=

𝟏

𝟐

𝟐𝒓

𝟐𝒓−𝟏
≈

𝟏

𝟐
= 𝟓𝟎% 

 

▪ How to reduce the error?   

▪ Instead of maintaining 1 or 2 of each bucket, we allow either 

r-1 or r buckets where r>2. 

▪ Except of the largest bucket, we can have any number of r-

1or r buckets. 

▪ In the sliding window, we can have up r buckets of each of 

the sizes less than 2r, then the total number of bits is:  

r20+ r21+ r22+…+r2r-1 = r(2r-1) 

 The error is 
𝟐𝒓−𝟏

𝐫(𝟐𝒓−𝟏)
=

𝟏

𝟐𝒓

𝟐𝒓

𝟐𝒓−𝟏
≈

𝟏

𝟐𝒓
`  

 So, the error is at most 𝑂(
1

𝑟
) 

▪ By picking r approximately, we can tradeoff between 

number of bits we store and the error. 
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• Finding frequent elements 

o Applications:  

▪ High-speed network switch: tokens are packets with source, 

▪ destination IP addresses and message contents. 

▪ Each token is an edge in graph (graph streams) 

▪ Each token in a point in some feature space 

▪ Each token is a row/column of a matrix 

o Problem Description: 

▪ The input consists of m objects/items/tokens S=e1, e2,..., es that are 

seen one by one by the algorithm where ei is an element of  a 

universal set U of size n=|U|  

▪ Let fi denote the frequency of an item i or number of times i is seen 

in the stream S 

Consider the frequency vector: 

 

f=(f1, f2, … , fn) where n = |U| 
 

For k>=0 the k’th frequency moment  

 

Fk = ∑ fi
k

n

i=1

 

▪ Special cases: 

o k=0:  

F0 = ∑ fi
0

n

i=1

 

 

- F0 is simply the number of distinct elements in stream 

(Flajolet-Martin(FM) algorithm) 
 

o k=1:  

F1 = ∑ fi
1

n

i=1

 

- F1 is the length of stream which is easy 
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o k=2:  

F2 = ∑ fi
2

n

i=1

 

 

- F2 is surprise number is a measure of how uneven the 

distribution is. 

- Example: 

 

Consider the following set U=(1,2,3,4,5,6,7,8,9,..1000} 

And a stream S of 10 values 

 

Case 1: S={200, 1,1,1,1,1,1,1,1,1} 

 

F2= 2002 + 9x12 = 40009 

 

Case 2: S={10,10,10,10,10,10, 8, 8, 8, 8} 

F2= 6x102+4x82=356 
  

o k=infinity 

- F is the maximum frequency (heavy hitters prob) 

 

 

o Direct Method 

▪ It requires memory of the order Ω(N) to store mi for all distinct 

elements. 

▪ But we have memory limitations, and requires an algorithm to 

compute in much lower memory 

 

• Alon-Matias-Szegedy (AMS) Algorithm (Works on all moments) 

o AMS works for all moments 

o It gives an unbiased estimate. 

o Let us consider the 2nd moment for now. 

o We pick and keep track of many variables X: 

o For each variable X, we form a key-value pair: 
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• X.key: The data element i 

• X.val: The count of item i 

 

▪ Note this requires a count in main memory, so the number of Xs is 

limited 

▪ The objective is to compute: 

 

𝑺 = ∑ 𝒎𝒊
𝟐

𝒊   

 

where mi is the number of times value i occurs in the 

stream and i is the number of distinct elements in the 

stream 

 

▪ Expectation Analysis 

• The second moment is 𝑺 = ∑ 𝒎𝒊
𝟐

𝒊  

• Our estimate is 

•  S=f(X)=n(2c-1) 
 

• Let us computer the expectation of our estimate:  

• ct is the number of times item at time t appears from time t 

onwards (c1=ma, c2=ma-1, c3=mb) 

 

If ma is the total count of a in the stream 
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mi is the total count of item i in the stream, assuming a 

stream of length n  

 

𝐄[𝐟(𝐗)] =  
𝟏

𝐧
∑ 𝐧(𝟐𝐜𝒕 − 𝟏)

𝐧

𝐭=𝟏

 

 

Where  

Time t when last item i is seen 𝒄𝒕 = 𝟏 

Time t when second last item i is seen 𝒄𝒕 = 𝟐 

… 

Time t when the first item i is seen 𝒄𝒕 = 𝒎𝒊 

 

• Sum the times by the value seen (By distinct item) 

 

                                         𝐄[𝐟(𝐗)] =  
𝟏

𝐧
∑ ∑ 𝒏 (𝟏 + 𝟑 + 𝟓 + ⋯ + 𝟐𝒎𝒊 − 𝟏)

𝒎𝒊

𝒊=𝟏
𝒊

 

 

                                           =  
𝟏

𝐧
∑ 𝒏 ∑(𝟐𝒊 − 𝟏)

𝒎𝒊

𝒊=𝟏
𝒊

=
𝟏

𝐧
∑ 𝒏(∑ 𝟐𝒊 − ∑ 𝟏

𝒎𝒊

𝒊=𝟏

)

𝒎𝒊

𝒊=𝟏
𝒊

 

 

       =  ∑ 𝟐
𝒎𝒊(𝒎𝒊 + 𝟏)

𝟐
−𝒎𝒊

𝒊
=  ∑ 𝒎𝒊

𝟐 + 𝒎𝒊 − 𝒎𝒊
𝒊

= ∑ 𝒎𝒊
𝟐

𝒊
 

  

 𝐄[𝐟(𝐗)] =  ∑ 𝒎𝒊
𝟐

𝒊 = 𝑺 
This is the second moment  

 

o High order moments 

▪ To estimate the kth moment, we use the same algorithm but change 

the estimate: 

▪ For k=2, we used  n(2.c-1) 

▪ For k=3, we use: n(3c2+-3c+1)  where c=X.val 

▪ Explanation: 
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• For k=2: 

o We used the following estimate function:  

• S=f(X) = n(2c-1) 

 

And we have shown that  𝐄[𝐟(𝐗)] =  ∑ 𝒎𝒊
𝟐

𝒊 = 𝑺 

 

o Note that the estimate function:  

 

• S=f(X) = n(2c-1) = n(c2-(c-1)2) 

 

o For k = 3:  

 

• S=f(X) = n(c3-(c-1)3)=n(3c2-3c+1) 

 

o For any k:  

 

• S=f(X) = n(ck-(c-1)k) 

 

o How do we handle never ending stream?  

▪ The estimate function we used assume a stream of n items:  

S=f(X) = n(2c-1) 

▪ Assume we can only store k counts. We must ignore some X’s out as 

time goes on. 

▪ Objective:  

• Each starting time t is selected with probability 
𝐤

𝐧
 

• Solution: 

• Use fixed-size sampling – Reservoir Sampling 

• Choose the first k times for k variables 

• When the nth element arrives (n>k), choose it with probability
k

n
  

• If you choose it, throw one of the previous stored variable X out 

with equal probability.  


